

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

CP3CN37 Connectivity Processor with Cache, USB Interface, and CAN Interface

Check for Samples: CP3CN37

1 INTRODUCTION

1.1 Features

- CPU Features
 - Fully static RISC processor core, capable of operating from 0 to 96 MHz with zero wait/hold state
 - Minimum 11.1 ns instruction cycle time with a 96-MHz internal clock frequency, based on a 12-MHz external input
 - Two-cycle signed 16-bit multiply/32-bit accumulate
 - 4K-byte, 4-way set-associative instruction cache
- Memory
 - 4K bytes instruction cache
 - 32K bytes data RAM
 - 16K bytes boot ROM
 - Addresses up to 4M bytes of external memory
- Broad Range of Hardware Communications
 Peripherals
 - Universal Serial Bus (USB) 2.0 On-The-Go
 - Audio/telematics codec with dual ADC inputs and high-quality stereo DAC output
 - CAN interface with 15 message buffers conforming to CAN specification 2.0B active
 - ACCESS.bus serial bus interface (I²C compatible)
 - I²S digital audio bus interface
 - Four Universal Asynchronous Receiver/Transmitter (UART) channels, two channels have USART capability
 - Advanced Audio Interface (AAI) to connect to external 8/13-bit PCM Codecs as well as to ISDN-Controllers through the IOM-2 interface (slave only)
 - Two CVSD/PCM converters, for supporting two bidirectional audio connections
- External Bus Interface
 - 16-bit data bus
 - 20-bit address bus
 - 2 programmable chip select outputs
 - Up to 4M bytes external memory
 - 8-level write buffer
- General-Purpose Hardware Peripherals

- 10-channel, 10-bit A/D Converter (ADC)
- 16-channel DMA controller
- Dual 16-bit Multi-Function Timer (MFT)
- Dual Versatile Timer Units (VTU), each with four independent timers
- Timing and Watchdog Unit
- Extensive Power and Clock Management Support
 - Two Phase Locked Loops (PLL) for synthesizing independent system and audio peripheral clocks
 - Two independent oscillators for Active mode (12 MHz) and Power Save mode (32.768 kHz) clocks
 - Low-power modes (Power Save, Idle, and Halt) for slowing or stopping clocks to optimize power consumption while meeting application needs
- Flexible I/O
 - Up to 31 general-purpose I/O pins (shared with on-chip peripheral I/O)
 - Programmable I/O pin characteristics: TRI-STATE output, push-pull output, weak pullup/pulldown input, high-impedance input, high-speed drive capability
 - Schmitt triggers on general-purpose inputs
 - Multi-Input Wake-Up (MIWU) capability
- Power Supply
 - I/O port operation at 3.0–3.3V
 - On-chip 1.8V regulator for core logic, ADC, and clocks
 - On-chip power-on reset
- Temperature Range
 - 40°C to +85°C (Industrial)
- Packages
- LQFP-144
- Complete Development Environment
 - Pre-integrated hardware and software support for rapid prototyping and production
 - Multi-file C source editor, source debugger, and project manager
 - Comprehensive, integrated, one-stop technical support

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. COP8 is a registered trademark of Texas Instruments Incorporated. Motorola is a trademark of Diane Trevino.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

CP3CN37

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

INSTRUMENTS

Texas

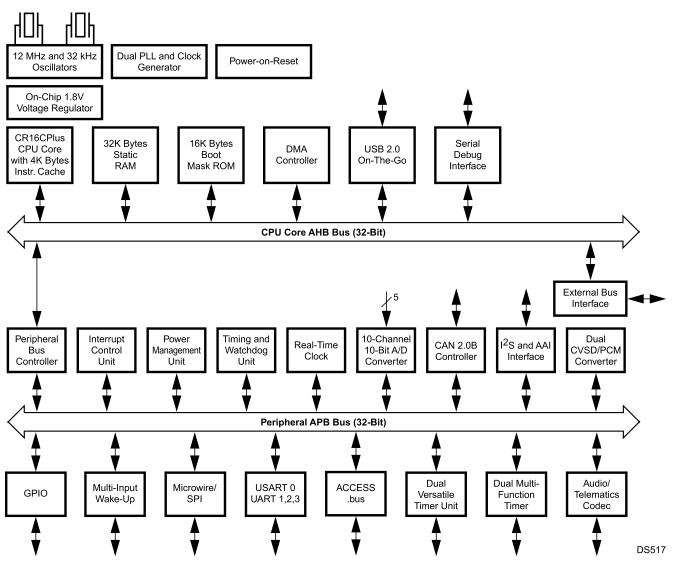
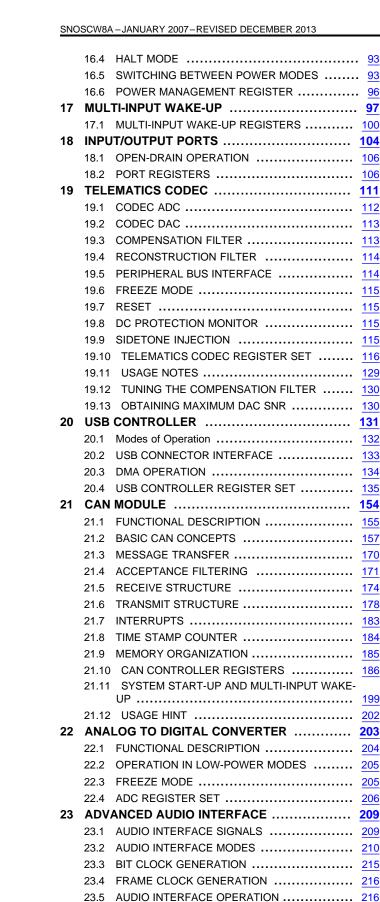


Figure 1-1. Block Diagram

1							
	1.1	Features	. 1				
2	GEN	ERAL DESCRIPTION	. <u>6</u>				
3	DEVI	DEVICE OVERVIEW					
	3.1	CR16CPLUS CPU CORE	• <u>7</u>				
	3.2	AMBA BUS ARCHITECTURE	• <u>7</u>				
	3.3	EXTERNAL BUS INTERFACE UNIT					
	3.4	MEMORY					
	3.5	USB					
	3.6	CAN INTERFACE	. <u>8</u>				
	3.7	AUDIO/TELEMATICS CODEC	. <u>8</u>				
	3.8	CVSD/PCM CONVERSION MODULES	. <u>8</u>				
	3.9	I2S DIGITAL AUDIO BUS	. 8				
	3.10	ADVANCED AUDIO INTERFACE	. 9				
	3.11	ANALOG TO DIGITAL CONVERTER					
	3.12	QUAD UART	. 9				
	3.13	MICROWIRE/SPI	10				
	3.14	ACCESS.BUS INTERFACE	10				
	3.15	DUAL MULTI-FUNCTION TIMER	10				
	3.16	VERSATILE TIMER UNITS	10				
	3.17	TIMING AND WATCHDOG MODULE	10				
	3.18	POWER MANAGEMENT	11				
	3.19	MULTI-INPUT WAKE-UP	11				
	3.20	INPUT/OUTPUT PORTS	11				
	3.21	CLOCK AND RESET MODULE	11				
	3.22	DMA CONTROLLER	12				
	3.23	SERIAL DEBUG INTERFACE	12				
	3.24	DEVELOPMENT SUPPORT	12				
4	SIGN	IAL DESCRIPTIONS	_				
	4.1	Device Signals	14				
5	CPU						
	5.1	GENERAL-PURPOSE REGISTERS					
	5.2	DEDICATED ADDRESS REGISTERS					
	5.3	PROCESSOR STATUS REGISTER (PSR)	_				
	5.4	CONFIGURATION REGISTER (CFG)					
	5.5	ADDRESSING MODES					
	5.6	STACKS	23				
	5.7	INSTRUCTION SET	23				
6	MEM	ORY	27				
7		RUCTION CACHE	28				
	7.1	CACHE LOCKING	29				
	7.2	CACHE INVALIDATION	29				
8		CORE BUS ARBITRATION	30				
-	8.1	BUS ARBITER REGISTERS	30				
9	-	ERNAL BUS INTERFACE UNIT	32				
•	9.1	EXTERNAL BUS SIGNALS	32				
	9.2	DEFAULT MEMORY CONFIGURATION	_				
	9.3	EXTERNAL BUS CYCLE TIMING					
	9.4	EBIU REGISTERS	36				
	9.4 9.5	USAGE NOTES	38				
10							
		FREEZE MODE	<u>39</u> 39				
	10.2		29				


CP3CN37

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

	10.3	SYSTEM CONFIGURATION REGISTERS	40
	10.3	MODULE CONFIGURATION REGISTERS (MCFG)	<u>40</u>
			<u>40</u>
	10.5	MODULE STATUS REGISTER (MSTAT)	<u>41</u>
	10.6 10.7	SOFTWARE RESET REGISTER (SWRESET) SYSTEM CONFIGURATION REGISTER	<u>41</u>
	10.7	(SYSCFG)	41
11	ROM	BOOTLOADER	42
••	11.1	COMMAND/RESPONSE INTERFACE	42
	11.2	ISP HUNT CONNECT CLASSIC COMMAND	43
	11.3	ISP_HUNT_CONNECT COMMAND	43
	11.4	ISP_GET_VERSION COMMAND	44
	11.5	ISP WRITE COMMAND	44
	11.6	ISP GO COMMAND	44
	11.7	ISP_ACK_CLASSIC RESPONSE	45
	11.8	ISP ACK RESPONSE	<u>45</u>
	11.9	ISP NACK RESPONSE	<u>45</u>
	11.10	-	<u>46</u>
	11.11		47
	11.12		<u>47</u>
12		DMA CONTROLLER	<u>47</u> 48
12	12.1	DMA-CAPABLE PERIPHERALS	49
	12.1	TRANSFER TYPES	<u>43</u> 50
	12.2	TRANSFER MODES	<u>50</u> 51
	12.3	SOFTWARE DMA REQUEST	53
	12.4	DMA REQUEST TIMEOUT	<u>53</u>
	12.5	ERROR RESPONSE	<u>55</u>
	12.7	FREEZE MODE	<u>54</u>
	12.7	REGISTER PROGRAMMING	<u>54</u>
	12.9	DMA CONTROLLER REGISTER SET	<u>54</u>
13		RRUPTS	<u>63</u>
10	13.1	NON-MASKABLE INTERRUPTS	<u>63</u>
	13.2	MASKABLE INTERRUPTS	<u>63</u>
	13.3	INTERRUPT PRIORITY GROUPS	<u>65</u>
	13.4	NESTED INTERRUPTS	<u>66</u>
	13.5	SOFTWARE INTERRUPTS	<u>67</u>
	13.6	INTERRUPT CONTROLLER REGISTERS	<u>67</u>
	13.7		72
14	-	CK GENERATION	73
•••	14.1	EXTERNAL CRYSTAL NETWORKS	75
	14.2	MAIN CLOCK	<u>76</u>
	14.3	SLOW CLOCK	<u>76</u>
	14.4	PLL CLOCKS	77
	14.5	HCLK CLOCK	80
	14.6	PCLK CLOCK	80
	14.7	AUXILIARY CLOCKS	80
	14.8	CLOCK GENERATION REGISTERS	82
15	-		<u>87</u>
-	15.1	POWER-ON RESET	87
	15.2	RESET INPUT TIMING	87
16	-	ER MANAGEMENT MODULE	91
-	16.1	ACTIVE MODE	92
	-	POWER SAVE MODE	92
		IDLE MODE	93

23.5

23.6

93

93

96

186

216

Submit Documentation Feedback Product Folder Links: CP3CN37

COMMUNICATION OPTIONS 220

	23.7	AUDIO INTERFACE REGISTERS	223
	23.8	USAGE EXAMPLE	231
24	I ² S IN	TERFACE	232
	24.1	INTERRUPTS AND DMA	<u>234</u>
	24.2	DATA ALIGNMENT	<u>234</u>
	24.3	I ² S INTERFACE REGISTERS	234
25	DUA	L CVSD/PCM CONVERSION MODULES	<u>241</u>
	25.1	OPERATION	<u>242</u>
	25.2	PCM CONVERSIONS	<u>242</u>
	25.3	CVSD CONVERSION	<u>242</u>
	25.4	FIXED-RATE PCM-TO-CVSD CONVERSION	<u>243</u>
	25.5	FIXED-RATE CVSD-TO-PCM CONVERSION	<u>243</u>
	25.6	FREE-RUNNING MODE	<u>243</u>
	25.7	INTERRUPT GENERATION	<u>243</u>
	25.8	DMA SUPPORT	<u>244</u>
	25.9	CVSD/PCM AUDIO DATA FLOW	<u>245</u>
	25.10	BUS BANDWIDTH AND LATENCY CONSIDERATIONS	247
	25.11	FREEZE MODE	247
	25.12		248
26	-	D UART	<u>2</u> 40 252
	26.1	FUNCTIONAL OVERVIEW	252
	26.2	UART OPERATION	253
	26.3	UART REGISTERS	260
	26.4	BAUD RATE CALCULATIONS	266
27	MICF	OWIRE/SPI INTERFACE	270
	27.1	MICROWIRE OPERATION	270
	27.2	MASTER MODE	273
	27.3	SLAVE MODE	275
	27.4	INTERRUPT GENERATION	<u>275</u>
	27.5	DMA SUPPORT	<u>276</u>
	27.6	MICROWIRE INTERFACE REGISTERS	<u>276</u>
28	ACC	ESS.BUS INTERFACE	<u>279</u>
	28.1	ACB PROTOCOL OVERVIEW	<u>279</u>
	28.2	ACB FUNCTIONAL DESCRIPTION	<u>283</u>
	28.3	ACCESS.BUS INTERFACE REGISTERS	<u>287</u>
		USAGE HINTS	292
29			
	29.1	PROGRAMMING	
		INTERRUPT	<u>294</u>
30		REAL-TIME CLOCK INTERFACE REGISTERS	
30	30.1	TWM STRUCTURE	
		TIMER TO OPERATION	
		WATCHDOG OPERATION	
		TWM REGISTERS	<u>300</u> 301
	30.5	WATCHDOG PROGRAMMING PROCEDURE	
31		L MULTI-FUNCTION TIMERS	
	31.1	TIMER STRUCTURE	
	31.2	TIMER OPERATING MODES	
		TIMER INTERRUPTS	
		TIMER I/O FUNCTIONS	

Copyright © 2007–2013, Texas Instruments Incorporated

www.ti.com

	31.5	TIMER REGISTERS	<u>313</u>
32	DUA	L VERSATILE TIMER UNITS (VTU)	<u>318</u>
	32.1	VTU FUNCTIONAL DESCRIPTION	<u>319</u>
	32.2	VTU REGISTERS	<u>326</u>
33	REG	ISTER MAP	<u>332</u>
34	REG	ISTER BIT FIELDS	<u>347</u>
35	ELE	CTRICAL CHARACTERISTICS	<u>361</u>
	35.1	Absolute Maximum Ratings	<u>361</u>
	35.2	DC Electrical Characteristics	<u>361</u>
	35.3	On-Chip Voltage Regulator Electrical	
		Characteristics	<u>362</u>
	35.4	USB Transceiver Electrical Characteristics	<u>362</u>
	35.5	Telematics Codec Electrical Characteristics	<u>363</u>
	35.6	ADC Electrical Characteristics	<u>364</u>
	35.7	Output Signal Levels	<u>364</u>

	35.8	Clock and Reset Timing	<u>365</u>
	35.9	UART Timing	<u>368</u>
	35.10	I/O Port Timing	<u>369</u>
	35.11	Advanced Audio Interface (AAI) Timing	<u>369</u>
	35.12	Microwire/SPI Timing	372
	35.13	ACCESS.bus timing	<u>378</u>
	35.14	USB Port AC Characteristicsy	<u>380</u>
	35.15	I ² S Interface Timing	<u>381</u>
	35.16	MULTI-FUNCTION TIMER (MFT) TIMING	382
	35.17	Versatile Timing Unit (VTU) Timing	382
	35.18	External Memory Interface	<u>383</u>
36	PIN A	ASSIGNMENTS	<u>384</u>
	36.1	CP3CN37 in the 144-pin LQFP Package	<u>384</u>
37	Revis	sion History	<u>389</u>

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

2 GENERAL DESCRIPTION

The CP3CN37 connectivity processor combines high performance with the massive integration needed for embedded applications. A powerful RISC core with 4K-byte instruction cache provides high computing bandwidth, DMA-driven hardware communications peripherals provide high I/O bandwidth, and an external bus provides system expandability..

On-chip communications peripherals include: Universal Serial Bus (2.0) OTG node and host controller, CAN, Microwire/ Plus/SPI, ACCESS.bus, quad UART, 10-bit A/D converter, and telematics/audio codec. Additional on-chip peripherals include DMA controller, dual CVSD/PCM conversion modules, I2S and AAI digital audio bus interfaces, Timing and Watchdog Unit, dual Versatile Timer Unit, dual Multi-Function Timer, and Multi-Input Wake-Up (MIWU)

In addition to providing the features needed for the next generation of embedded products, the CP3CN37 is backed up by the software resources that designers need for rapid time-to-market, including an operating system, peripheral drivers, reference designs, and an integrated development environment. Combined with an external program memory, the CP3CN37 provides a complete system solution.

Texas Instruments offers a complete and industryproven application development environment for CP3CN37 applications, including the IAR Embedded Workbench, iSYSTEM winIDEA and iC3000 Active Emulator, Development Board, and application examples.

3 DEVICE OVERVIEW

The CP3CN37 connectivity processor is an advanced microcomputer with system timing, interrupt logic, instruction cache, data memory, and I/O ports included on-chip, making it well-suited to a wide range of embedded applications. Figure 1-1 shows the major on-chip components of the CP3CN37..

3.1 CR16CPLUS CPU CORE

The CP3CN37 contains a CR16CPlus CPU core. This core improves upon the performance of previous CP3000 devices by adding a 4-Kbyte instruction cache and doubling the CPU core data bus bandwidth. The cache greatly reduces instruction-fetch bandwidth on the 32-bit system bus, which leaves more bus bandwidth available for DMA-based I/O. The cache moves the average execution rate closer to the peak rate of one instruction per clock cycle, especially when executing from off-chip program memory. The DMA controller provides efficient sharing of the CPU core bus between the CPU and high-bandwidth peripherals such as wired and wireless communication interfaces.

For information on the instruction set architecture, please refer to the CR16C Programmer's Reference Manual (document number 424521772-101, which may be downloaded from Texas Instruments' web site at <u>www.ti.com</u>).

3.2 AMBA BUS ARCHITECTURE

The CPU core bus implements an AMBA-compatible AHB high-performance 32-bit bus with bursting and split transactions. The peripheral bus implements an AMBA-compatible 32-bit APB bus. The CPU AHB bus operates up to 96 MHz. The APB bus operates at a rate which is a factor of 1, 2, or 4 slower than the CPU AHB bus.

3.3 EXTERNAL BUS INTERFACE UNIT

The External Bus Interface Unit (EBIU) provides programmable timing, memory type, base address, size, and bus width (8 or 16 bits) for two regions of up to 2M bytes. An 8- level write buffer releases the bus master to continue execution without waiting for write cycles to complete.

3.4 MEMORY

The CP3CN37 devices support a uniform linear address space. Three types of on-chip memory occupy specific regions within this address space, along with any external memory:

- 32K bytes of RAM
- 16K bytes of boot ROM
- Up to 4M bytes of external memory

The 32K bytes of CPU RAM are used for temporary storage of data and for the program stack and interrupt stack. Read and write operations can be byte-wide or word-wide, depending on the instruction executed by the CPU.

3.5 USB

The full-speed Universal Serial Bus (USB) node and host controller is compatible with USB Specification 2.0 and USB On-The-Go. It integrates the required USB transceiver, the Serial Interface Engine (SIE), and USB endpoint FIFOs. A total of seven endpoint pipes are supported: one bidirectional pipe for the mandatory control EP0 and an additional six pipes for unidirectional endpoints to support USB interrupt, bulk, and isochronous data transfers.

The on-chip USB transceiver features an integrated pullup resistor on the D+ line to UVCC. This pullup resistor can be switched in or out by the USB VBUS sense input (VBUS), which eliminates the need for external components.

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

3.6 CAN INTERFACE

The CAN module supports Full CAN 2.0B class, CAN serial bus interfaces for applications that require a high-speed (up to 1 Mbits per second) or a low-speed interface with CAN bus master capability. The data transfer between CAN and the CPU is established by 15 memory-mapped message buffers, which can be individually configured as receive or transmit buffers. An incoming message is filtered by two masks, one for the first 14 message buffers and another one for the 15th message buffer to provide a basic CAN path. A priority decoder allows any buffer to have the highest or lowest transmit priority. Remote transmission requests can be processed automatically by automatic reconfiguration to a receiver after transmission or by automated transmit scheduling upon reception. In addition, a 16-bit time stamp counter supports real-time applications.

The CAN module allows single-cycle byte or word read/ write access. A set of diagnostic features (such as loopback, listen only, and error identification) support development with the CAN module and provide a sophisticated error management tool.

The CAN receiver can trigger a wake-up condition out of low-power modes through the Multi-Input Wake-Up unit.

3.7 AUDIO/TELEMATICS CODEC

The on-chip codec is designed for voice input and stereo audio playback. It includes dual mono ADC channels operating at a sample rate of 8–24 kHz (125x oversampling clock required). A stereo DAC operates at selected sample rates from a 125x or 128x oversampling clock, driving two configurable, gain-programmable differential line driver outputs. The DAC features click and pop reduction, zero-crossing detection, tone/compensation filter, sidetone injection from the ADC, and internal power management. The ADCs accept differential or single-ended analog microphone inputs. The DAC employs fully differential signalling for high PSRR and low crosstalk. DMA transfers are supported to allow for fast CPU-independent receive and transmit..

3.8 CVSD/PCM CONVERSION MODULES

The two CVSD/PCM modules perform conversion between CVSD data and PCM data. The PCM data can be 8-bit µ- Law, 8-bit A-Law, or 13-bit to 16-bit Linear.

3.9 I2S DIGITAL AUDIO BUS

The Inter-IC Sound (I^2S) interface is a synchronous serial interface intended for the transfer of digital audio data. The I2S interface can be configured as a master or a slave, and it supports all three common data formats: I^2S -mode, left-justified, and right-justified. It has programmable word length from 8 to 32 bits and programmable valid data resolution from 8 to 24 bits.

3.10 ADVANCED AUDIO INTERFACE

The Advanced Audio Interface (AAI) provides a serial synchronous, full-duplex interface to codecs and similar serial devices. Transmit and receive paths operate asynchronously with respect to each other. Each path uses three signals for communication: shift clock, frame synchronization, and data.

When the receiver and transmitter use external shift clocks and frame sync signals, the interface operates in its asynchronous mode. Alternatively, the transmit and receive path can share the same shift clock and frame sync signals for synchronous mode operation.

3.11 ANALOG TO DIGITAL CONVERTER

This device contains a 10-channel, multiplexed input, successive approximation, 10-bit Analog-to-Digital Converter. It supports both single-ended and differential modes of operation.

The integrated 10-bit ADC provides the following features:

- 10-channel, multiplexed input
- 5 differential channels
- · Single-ended and differential external filtering capability
- 12-bit resolution; 10-bit accuracy
- Sign bit
- 10-microsecond conversion time
- External start trigger
- Programmable start delay after start trigger
- Poll or interrupt on conversion completion

The ADC provides several options for the voltage reference source. The positive reference can be ADVCC (internal), VREF, ADC0, or ADC1. The negative reference can be ADVCC (internal), ADC2, or ADC3.

Two specific analog channel selection modes are supported. These are as follows:

- Allow any specific channel to be selected at one time. The A/D Converter performs the specific conversion requested and stops.
- Allow any differential channel pair to be selected at one time. The A/D Converter performs the specific differential conversion requested and stops.

In both single-ended and differential modes, there is the capability to connect the analog multiplexer output and A/D converter input to external pins. This provides the ability to externally connect a common filter/signal conditioning circuit for the A/D Converter.

3.12 QUAD UART

Four UART modules support a wide range of programmable baud rates and data formats, parity generation, and several error detection schemes. The baud rate is generated onchip, under software control. All UART modules support DMA. Two modules have USART capability (synchronous mode) and hardware flow control. The maximum speed is 3.072 Mbaud in either synchronous or asynchronous mode.

The UARTs offer a wake-up condition from the low-power modes using the Multi-Input Wake-Up module.

The ADC provides several options for the voltage reference source. The positive reference can be ADVCC (internal), VREF, ADC0, or ADC1. The negative reference can be ADVCC (internal), ADC2, or ADC3.

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

3.13 MICROWIRE/SPI

The Microwire/SPI (MWSPI) interface module supports synchronous serial communications with other devices that conform to Microwire or Serial Peripheral Interface (SPI) specifications. It supports 8-bit and 16-bit data transfers. The maximum bus clock frequency is 12 MHz.

The Microwire interface allows several devices to communicate over a single system consisting of four wires: serial in, serial out, shift clock, and slave enable. At any given time, the Microwire interface operates as a master or a slave. The Microwire interfaces supports the full set of slave select for multi-slave implementation.

In master mode, the shift clock is generated on-chip under software control. In slave mode, a wake-up out of a lowpower mode may be triggered using the Multi-Input Wake- Up module.

3.14 ACCESS.BUS INTERFACE

The ACCESS.bus (ACB) interface module supports a twowire serial interface compatible with the ACCESS.bus physical layer. It is also compatible with Intel's System Management Bus (SMBus) and Philips' I2C bus. The ACB module can be configured as a bus master or slave, and it can maintain bidirectional communications with both multiple master and slave devices. The maximum bus clock frequency is 400 kHz (Fast-mode).

The ACCESS.bus receiver can trigger a wake-up condition out of the low-power modes through the Multi-Input Wake- Up module.

3.15 DUAL MULTI-FUNCTION TIMER

The two Multi-Function Timer (MFT) modules each contain a pair of 16-bit timer/counter registers. Each timer/counter unit can be configured to operate in any of the following modes:

- *Processor-Independent Pulse Width Modulation (PWM) mode:* Generates pulses of a specified width and duty cycle and provides a general-purpose timer/ counter.
- *Dual Input Capture mode:* Measures the elapsed time between occurrences of external event and provides a general-purpose timer/counter.
- *Dual Independent Timer mode:* Generates system timing signals or counts occurrences of external events.
- Single Input Capture and Single Timer mode: Provides one external event counter and one system timer.

3.16 VERSATILE TIMER UNITS

The two Versatile Timer Unit (VTU) modules each contain four independent timer subsystems, which operate as a dual 8-bit PWM configuration, a single 16-bit PWM timer, or a 16-bit counter with two input capture channels. Each of the timer subsystems offer an 8-bit clock prescaler to accommodate a wide range of frequencies.

3.17 TIMING AND WATCHDOG MODULE

The Timing and Watchdog Module (TWM) contains a Real- Time timer and a Watchdog unit. The Real-Time Clock Timing function can be used to generate periodic real-time based system interrupts. The timer output is one of 16 inputs to the Multi-Input Wake-Up module which can be used to exit from a low-power mode. The Watchdog unit is designed to detect the application program getting stuck in an infinite loop resulting in loss of program control or "runaway" programs. When the watchdog triggers, it resets the device. The TWM is clocked by the low-speed Slow Clock.

3.18 POWER MANAGEMENT

The Power Management Module (PMM) improves the efficiency of the device by changing the operating mode and power consumption to match the required level of activity.

The device can operate in any of four power modes:

- Active: The device operates at full speed using the high-frequency clock. All device functions are fully operational.
- *Power Save:* The device operates at reduced speed using the Slow Clock. The CPU and some modules can continue to operate at this low speed.
- *Idle:* The device is inactive except for the Power Management Module and Timing and Watchdog Module, which continue to operate using the Slow Clock.
- Halt: The device is inactive but still retains its internal state (RAM and register contents).

The PMM provides a mechanism to handle Bluetooth-specific power management modes, for optimizing power consumption during special Bluetooth states, like Park, Page Scan, Inquiry Scan, and so on.

3.19 MULTI-INPUT WAKE-UP

The Multi-Input Wake-Up (MIWU) feature is used to return (wake-up) the device from low-power modes to the active mode. The MIWU unit receives wake-up signals from various internal and external sources. In addition to the wakeup function, the MIWU unit can generate up to eight interrupt requests. Each MIWU channel can be individually programmed to activate one of the interrupt requests.

3.20 INPUT/OUTPUT PORTS

The device has 31 software-configurable I/O pins, organized into four ports called Port E, Port F, Port G, and Port H. Each pin can be configured to operate as a general-purpose input or general-purpose output. In addition, many I/O pins can be configured to operate as inputs or outputs for on-chip peripheral modules such as the UARTs or timers.

The I/O pin characteristics are fully programmable. Each pin can be configured to operate as a TRI-STATE output, pushpull output, weak pullup/pulldown input, high-speed drive, or high-impedance input.

3.21 CLOCK AND RESET MODULE

The Clock and Reset module generates a 12-MHz Main Clock from an external crystal network or external clock input. Main Clock may be used as a reference clock for two PLL-based clock multipliers available for generating higher-speed clocks.

Most modules operate from clocks derived from Main Clock or a PLL clock. Modules on the CPU core AHB bus operate from HCLK Clock, while modules on the peripheral APB bus operate from PCLK Clock. PCLK Clock is generated by dividing HCLK Clock by 1, 2, or 4. Some peripheral modules may use one of several auxiliary clocks, which also are derived from Main Clock or a PLL clock using 12-bit programmable prescalers.

In Power-Save mode, HCLK Clock is driven by Slow Clock, which is typically a 32.768 kHz signal generated from an external clock network or a prescaled Main Clock may be used to eliminate the 32.768 kHz crystal network, for the most cost-sensitive applications. In the most power-sensitive applications, operation from an external 32.768 kHz crystal network allows the high-frequency oscillator and PLLs to be shut down.

In addition, the Clock and Reset module generates the device reset by using reset input signals coming from an external reset, the watchdog timer, or the SDI debugging interface. A power-on reset (POR) circuit eliminates the need for an external RC network. The POR circuit generates an internal reset of sufficient length if the power supply rise time specification is met.

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

3.22 DMA CONTROLLER

The Direct Memory Access Controller (DMAC) can speed up data transfer between memory and I/O devices or between two regions of memory, as compared to data transfers performed directly by the CPU. Cycle stealing allows the CPU and the DMAC to interleave access to the CPU core bus for greater utilization of the available bandwidth. The following on-chip modules can assert a DMA request to the DMA controller:

- USART 0/1 (4 request channels)
- UART 2/3 (4 request channels)
- Advanced Audio Interface (6 request channels)
- CVSD/PCM Converter 0/1 (8 request channels)
- Microwire/SPI 0/1 (4 request channels)
- ACCESS.bus 0/1 (2 request channels)
- Codec (4 request channels)
- I²S Interface (4 request channels)
- USB (6 request channels)

3.23 SERIAL DEBUG INTERFACE

The Serial Debug Interface module (SDI module) provides a JTAG-based serial link to an external debugger, for example running on a PC. In addition, the SDI module integrates an on-chip debug module, which allows the user to set up to eight hardware breakpoints on instruction execution and data transfer. The SDI module can act as a CPU bus master to access all memory-mapped resources, such as RAM and peripherals. Therefore it also allows for fast program code download using the JTAG interface.

3.24 DEVELOPMENT SUPPORT

In addition to providing the features needed for the next generation of embedded products, the CP3CN37 devices are backed up by the software resources that designers need for rapid product development, including an operating system, peripheral drivers, reference designs, and an integrated development environment.

Texas Instruments offers a complete and industry-proven application development environment for CP3CN37 applications, including the IAR Embedded Workbench, iSYSTEM winIDEA and iC3000 Active Emulator, Development Board, and Application Software. See your Texas Instruments sales representative for current information on availability and features of emulation equipment and evaluation boards.

CP3CN37

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

4 SIGNAL DESCRIPTIONS

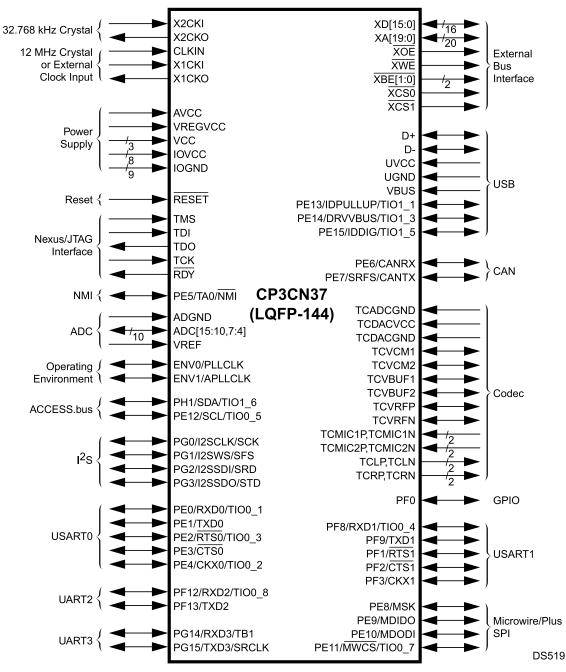


Figure 4-1. CP3CN37 Device Signals

4.1 Device Signals

Some pins may be enabled as general-purpose I/O-port pins or as alternate functions associated with specific peripherals or interfaces. These pins may be individually configured as port pins, even when the associated peripheral or interface is enabled. Table 4-1 describes the device signals.

Name	Pins	I/O	Primary Function	Alternate Name	I/O	Alternate Function
CLKIN	1	Input	12 MHz Clock Input	None	None	None
X1CKI	1	Input	12 MHz Oscillator Input	None	None	None
X1CKO	1	Output	12 MHz Oscillator Output	None	None	None
X2CKI	1	Input	32 kHz Oscillator Input	None	None	None
X2CKO	1	Output	32 kHz Oscillator Output	None	None	None
RESET	1	Input	Chip External Reset	None	None	None
ENV0	1	Input	Special mode select input with internal pull-up during reset	PLLCLK	Output	PLL1 Clock Output
ENV1	1	Input	Special mode select input with internal pull-up during reset	APLLCLK	Output	PLL2 Clock Output
TEST	1	Input	Manufacturing test only	None	None	None
VREGVCC	1	Input	Power Supply Input for On-Chip 1.8V Voltage Regulator	None	None	None
VCC	3	Output	Internal 1.8V Power Supply (external decoupling bypass)	None	None	None
IOVCC	8	Input	I/O 3.0-3.3V Power Supply	None	None	None
IOGND	9	Input	I/O Ground	None	None	None
AVCC	1	Output	Internal 1.8V Power for Codec ADC and 10-channel ADC (external decoupling bypass)	None	None	None
ADGND	1	Input	10-channel ADC Ground	None	None	None
TCADCGND	1	Input	Codec ADC Ground	None	None	None
TCDACVCC	1	Input	Codec DAC 3.3V Power Supply	None	None	None
TCDACGND	1	Input	Codec DAC 3.3V Ground	None	None	None
UVCC	1	Input	USB 3.3V Transceiver Supply	None	None	None
UGND	1	Input	USB 3.3V Transceiver Ground	None	None	None
TMS	1	Input	JTAG Test Mode Select (with internal weak pull-up)	None	None	None
ТСК	1	Input	JTAG Test Clock Input (with internal weak pull-up)	None	None	None
TDI	1	Input	JTAG Test Data Input (with internal weak pull-up)	None	None	None
TDO	1	Output	JTAG Test Data Output	None	None	None
RDY	1	Output	NEXUS Ready Output	None	None	None
VBUS	1	Input	USB VSENSE (5V tol.)	None	None	None
D+	1	I/O	USB D+ Upstream Port	None	None	None
D-	1	I/O	USB D- Upstream Port	None	None	None
ADC4	1	Input	ADC Input Channel 4	Μυχουτο	Output	Analog Multiplexer Output 0
ADC5	1	Input	ADC Input Channel 5	MUXOUT1	Output	Analog Multiplexer Output 1
ADC6	1	Input	ADC Input Channel 6	None	None	None
ADC7	1	Input	ADC Input Channel 7	ADCIN	Input	ADC Input (in MUX mode)
ADC10	1	Input	ADC Input Channel 10	None	None	None

Table 4-1. CP3CN37 Signal Descriptions

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

		i abio i	-1. CF3CN37 Signal Description			
ADC11	1	Input	ADC Input Channel 11	None	None	None
ADC12	1	Input	ADC Input Channel 12	None	None	None
ADC13	1	Input	ADC Input Channel 13	None	None	None
ADC14	1	Input	ADC Input Channel 14	None	None	None
ADC15	1	Input	ADC Input Channel 15	None	None	None
VREF	1	Input	ADC Voltage Reference	None	None	None
TCVBUF1	1	Input	Codec ADC1 External Filter Capacitor Pin (1.5V)	None	None	None
TCVBUF2	1	Input	Codec ADC2 External Filter Capacitor Pin (1.5V)	None	None	None
TCVCM1	1	Input	Codec ADC1 External Filter Capacitor Pin (0.9V)	None	None	None
TCVCM2	1	Input	Codec ADC2 External Filter Capacitor Pin (0.9V)	None	None	None
TCVRFP	1	Output	Codec ADC1/ADC2 1.5V Reference (buffered version to pro- vide microphone bias)	None	None	None
TCVRFN	1	Input	Codec ADC1/ADC2 Reference Ground (connect to 0V)	None	None	None
TCMIC1P	1	Input	Codec Microphone 1 Input (+)	None	None	None
TCMIC1N	1	Input	Codec Microphone 1 Input (-)	None	None	None
TCMIC2P	1	Input	Codec Microphone 2 Input (+)	None	None	None
TCMIC2N	1	Input	Codec Microphone 2 Input (-)	None	None	None
TCRP	1	Output	Codec Right Channel Output (+)	None	None	None
TCRN	1	Output	Codec Right Channel Output (-)	None	None	None
TCLP	1	Output	Codec Left Channel Output (+)	None	None	None
TCLN	1	Output	Codec Left Channel Output (-)	None	None	None
DEO				RXD0	Input	USART 0 Receive Data Input
PE0	1	I/O	Generic I/O	TIO0_1	I/O	Versatile Timer Unit 0 Input 1
PE1	1	I/O	Generic I/O	TXD0	Output	USART 0 Transmit Data Output
PE2	1	I/O	Generic I/O	RTS0	Output	USART 0 Ready-To- Send Output
1 22	•	1,0		TIO0_3	I/O	Versatile Timer Unit 0 Input 3
PE3	1	I/O	Generic I/O	CTS0	Input	USART 0 Clear-To- Send Input
				CKX0	I/O	USART 0 Clock Input
PE4	1	I/O	Generic I/O	TIO0_2	I/O	Versatile Timer Unit 0 Input 2
PE5	1	I/O	Generic I/O	TA0	I/O	Multi-Function Timer 0 Port A
				NMI	Input	Non-Maskable Interrupt
PE6	1	I/O	Generic I/O	CANRX	Input	CAN Receive Input
	4			CANTX	Output	CAN Transmit Output
PE7	1	I/O	Generic I/O	SRFS	I/O	AAI Serial Receive Frame Sync
PE8	1	I/O	Generic I/O	MSK	I/O	Microwire/SPI Shift Clock
PE9	1	I/O	Generic I/O	MDIDO	I/O	Microwire/SPI Master In Slave Out

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

			CP3CN37 Signal Descr		-	
PE10	1	I/O	Generic I/O	MDODI	I/O	Microwire/SPI Maste Out Slave In
PE11	1	I/O	Generic I/O	MWCS	I/O	Microwire/SPI Slave Select Input
				TIO0_7	I/O	Versatile Timer Unit Input 7
PE12	1	I/O	Generic I/O	SCL	I/O	ACCESS.bus Clock
				TIO0_5	I/O	Versatile Timer Unit Input 5
PE13	1	I/O	Generic I/O	IDPULLUP	Output	USB OTG ID Pullu Enable
				TIO1_1	I/O	Versatile Timer Unit Input 6
PE14	1	I/O	Generic I/O	DRVVBUS	Output	USB OTG VBUS Dri Enable
				TIO1_3	I/O	Versatile Timer Unit Input 3
PE15	1	I/O	Generic I/O	IDDIG	Input	USB OTG ID Inpu
				TIO1_5	I/O	Versatile Timer Unit Input 5
PF0	1	I/O	Generic I/O	None	None	None
PF1	1	I/O	Generic I/O	RTS1	Output	USART 1 Ready-To Send Output
PF2	1	I/O	Generic I/O	CTS1	Input	USART 1 Clear-To Send Input
PF3	1	I/O	Generic I/O	CKX1	I/O	USART 1 Clock Inp
PF8	1	I/O	Generic I/O	RXD1	Input	USART 1 Receive D Input
				TIO0_4	I/O	Versatile Timer Unit Input 4
PF9	1	I/O	Generic I/O	TXD1	Output	USART 1 Transmit D Output
PF12	1	I/O	Generic I/O	RXD2	Input	UART 2 Receive Da Input
				TIO0_8	I/O	Versatile Timer Unit Input 8
PF13	1	I/O	Generic I/O	TXD2	Output	UART 2 Transmit Da Output
PG0	1	I/O	Generic I/O	I2SCLK	I/O	I2S Serial Clock
				SCK	I/O	AAI Serial Transm Clock
PG1	1	I/O	Generic I/O	I2SWS	I/O	I2S Word Select
				SFS	I/O	AAI Serial Transm Frame Sync
PG2	1	I/O	Generic I/O	I2SSDI	Input	I2S Serial Data Inp
				SRD	Input	AAI Serial Receive D
PG3	1	I/O	Generic I/O	I2SSDO	Output	I2S Serial Data Out
				STD	Output	AAI Serial Transmit
PG14	1	I/O	Generic I/O	RXD3	Input	UART 3 Receive Da Input
				TB1	Input	Multi-Function Time Port B
PG15	1	I/O	Generic I/O	TXD3	Output	UART 3 Transmit Da Output AAI Serial Receive
	1 1			SRCLK	I/O	

Table 4-1. CP3CN37 Signal Descriptions (continued)

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

		i abie i				
PH1	1	I/O	Generic I/O	SDA	I/O	ACCESS.bus Serial Data
				TIO1_6	I/O	Versatile Timer Unit 1 Input 6
XWE	1	Output	External Bus Write Enable	None	None	None
XOE	1	Output	External Bus Output Enable	None	None	None
XBE[1:0]	2	Output	External Bus Byte Enables	None	None	None
XCS[1:0]	2	Output	External Bus Chip Selects	None	None	None
XA[19:0]	20	Output	External Address Bus	None	None	None
XD[15:0]	16	I/O	External Data Bus	None	None	None

Table 4-1. CP3CN37 Signal Descriptions (continued)

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

CPU ARCHITECTURE 5

The CP3CN37 uses the CR16CPlus third-generation 16-bit CompactRISC processor core. The CPU implements a Re- duced Instruction Set Computer (RISC) architecture that al- lows an effective execution rate of up to one instruction per clock cycle. For a detailed description of the CR16CPlus ar- chitecture, see the CompactRISC CR16C Programmer's Reference Manual which is available on the Texas Instruments web site (www.ti.com).

The CR16CPlus CPU core includes these internal registers:

- General-purpose registers (R0-R13, RA, and SP) •
- Dedicated address registers (PC, ISP, USP, and INTBASE)
- Processor Status Register (PSR)
- Configuration Register (CFG)

The R0-R11, PSR, and CFG registers are 16 bits wide. The R12, R13, RA, SP, ISP and USP registers are 32 bits wide. The PC register is 24 bits wide. Figure 5-1 shows the CPU registers.

	Dedicated Address Registers 23 15 (
31		PC		
ISP	Ή	ISPL		
USPH		USPL		
INTBASEH		INTBASEL		

Processor 15	Status	Register 0
	PSR	

Configuration Register	
15 0)
	1

			CFG	
--	--	--	-----	--

eneral-Purpose Registe	ers
15 0	
R0	
R1	
R2	
R3	
R4	
R5	
R6	
R7	
R8	
R9	
R10	
R11	
R12	
R13	

RA	
SP	

DS004

Figure 5-1. CPU Architecture

Some register bits are designated as "reserved." Software must write a zero to these bit locations when it writes to the register. Read operations from reserved bit locations return undefined values.

31

5.1 GENERAL-PURPOSE REGISTERS

The CompactRISC CPU features 16 general-purpose registers. These registers are used individually as 16-bit operands or as register pairs for operations on addresses greater than 16 bits.

- General-purpose registers are defined as R0 through R13, RA, and SP.
- Registers are grouped into pairs based on the setting of the Short Register bit in the Configuration Register (CFG.SR). When the CFG.SR bit is set, the grouping of register pairs is upward-compatible with the architecture of the earlier CR16A/B CPU cores: (R1,R0), (R2,R1) ... (R11,R10), (R12_L, R11), (R13_L, R12_L), (R14_L, R13_L) and SP. (R14_L, R13_L) is the same as (RA,ERA).
- When the CFG.SR bit is clear, register pairs are grouped in the manner used by native CR16CPlus software: (R1,R0), (R2,R1) ... (R11,R10), (R12_L, R11), R12, R13, RA, SP. R12, R13, RA, and SP are 32-bit registers for holding addresses greater than 16 bits.

With the recommended calling convention for the architecture, some of these registers are assigned special hardware and software functions. Registers R0 to R13 are for general- purpose use, such as holding variables, addresses, or index values. The SP register holds a pointer to the program run- time stack. The RA register holds a subroutine return ad- dress. The R12 and R13 registers are available to hold base addresses used in the index addressing mode.

If a general-purpose register is specified by an operation that is 8 bits long, only the lower byte of the register is used; the upper part is not referenced or modified. Similarly, for word operations on register pairs, only the lower word is used. The upper word is not referenced or modified.

5.2 DEDICATED ADDRESS REGISTERS

The CR16CPlus has four dedicated address registers to implement specific functions: the PC, ISP, USP, and INTBASE registers.

5.2.1 Program Counter (PC) Register

The 24-bit value in the PC register points to the first byte of the instruction currently being executed. CR16CPlus instructions are aligned to even addresses, therefore the least significant bit of the PC is always 0. At reset, the PC is initialized to 0 or an optional predetermined value. When a warm reset occurs, value of the PC prior to reset is saved in the (R1,R0) general-purpose register pair.

5.2.2 Interrupt Stack Pointer (ISP)

The 32-bit ISP register points to the top of the interrupt stack. This stack is used by hardware to service exceptions (interrupts and traps). The stack pointer may be accessed as the ISP register for initialization. The interrupt stack can be located anywhere in the CPU address space. The ISP cannot be used for any purpose other than the interrupt stack, which is used for automatic storage of the CPU registers when an exception occurs and restoration of these registers when the exception handler returns. The interrupt stack grows downward in memory. The least significant bit and the 8 most significant bits of the ISP register are always 0.

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

5.2.3 User Stack Pointer (USP)

The USP register points to the top of the user-mode program stack. Separate stacks are available for user and supervisor modes, to support protection mechanisms for multitasking software. The processor mode is controlled by the U bit in the PSR register (which is called PSR.U in the shorthand convention). Stack grow downward in memory. If the USP register points to an illegal address (any address greater than 0x00FF_FFF) and the USP is used for stack access, an IAD trap is taken.

5.2.4 Interrupt Base Register (INTBASE)

The INTBASE register holds the address of the dispatch table for exceptions. The dispatch table can be located anywhere in the CPU address space. When loading the INTBASE register, bits 31 to 24 and bit 0 must written with 0.

5.3 PROCESSOR STATUS REGISTER (PSR)

The PSR provides state information and controls operating modes for the CPU. The format of the PSR is shown below.

15		12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		I	Р	Е	0	Ν	Z	F	0	U	L	Т	С
С	0 – No c	ry bit ind arry or b y or borr	orrow oc	curred.	arry or t	or- row	occurred a	after add	ition or s	ubtractio	n.			
Т	automat 0 – Trac		abled du bled.				Trace trap ception h		is taken a	after eve	ry instruct	tion. Trac	cing is	
L				result of t ater than c			on operat perand.	ion, with	the oper	ands inte	erpreted a	as unsign	ed intege	ers.
U	for stack instructio USP reg an atterr 0 – CPU	c operation on. Wher jister is a opt to acco l is exect	ons. In us n an exce accessible cess the uting in s	ser mode, eption is ta e using th	the USI aken, the e Load I ster gene mode.	P registe e excepti Processo	iser or sup r is used i on handle or Register UND trap.	nstead. er automa r (LPR/L	User moo atically be	le is ente egins exe	ered by ex ecution in	xecuting supervis	the Jump or mode.	USR The
F	among o	other thin	ig uses. I		ole, integ		exception netic instr							
Z	equal. If 0 – Sour	the oper	 ands a destination 	omparisor re unequa on operan on operan	al, the Z ds un- e	bit is clea qual.	a compar ared.	ison of ii	ntegers, t	he Z bit i	is set if th	ie two op	erands a	re
Ν				s the resu ater than c			parison op berand.	peration,	with the	operand	s interpre	ted as si	gned inte	egers.
E	Interrupt interrupt instructio 0 – Mas	Enable	(I) bit are ed. The errupts d	e both set E bit is se lisabled.	all inter	rupts are	disables i e enabled. nterrupts	If either	of these	bits is cl	ear, only	the non-	maskabl	е
Ρ	once for the P bit 0 – No t	one inst	set at the pending	At the beg	inning o	f the exe	e Trace (ecution of ecution, t	an instru	ction, the	state of				
I	Maskabl maskabl set upor 0 – Mas	e Interru e interru	pt En- al pt is take tion of ar errupts d	ole (E) bit en. Unlike n interrupt lisabled.	are both the E bi	n set, all t, the I bi	enable of maskable it is autom	interrup	ts are tak	en. If eit	her bit is	clear, on	ly the nor	า-

Bits Z, C, L, N, and F of the PSR are referenced from assembly language by the condition code in conditional branch instructions. A conditional branch instruction may cause a branch in program execution, based on the value of one or more of these PSR bits. For example, one of the Bcond instructions, BEQ (Branch EQual), causes a branch if the PSR.Z bit is set.

On reset, bits 0 through 11 of the PSR are cleared, except for the PSR.E bit, which is set. On warm reset, the values of each bit before reset are copied into the R2 general-purpose register. Bits 4 and 8 of the PSR have a constant value of 0. Bits 12 through 15 are reserved. In general, status bits are modified only by specific instructions. Otherwise, status bits maintain their values throughout instructions which do not implicitly affect them.

5.4 CONFIGURATION REGISTER (CFG)

The CFG register is used to enable or disable various operating modes and to control optional on-chip caches. All CFG bits are cleared on reset.

15	10	9	8	7	6	5	4	3	2	1	0
	Reserved	SR	ED	0	0	LIC	IC	Re	s.	0	0
IC	The Instruction Cache bit controls CPU. When the instruction cache i cache automatically invalidates all do not result in bus cycles on the C 0 – Instruction cache disabled. 1 – Instruction cache enabled.	s disable of the ca	d, every che entr	instructio	n fetch is	s propaga	ted to th	e CPU co	re bus.	Disabling	the
LIC	The Lock Instruction Cache bit cor locked, no new entries are allocate cache. 0 – Instruction cache is not locked. 1 – Instruction cache is locked.	ed as a re									
ED	the size of an entry in the interrupt exception handler. When the IDT h address space. The location of the 0 – Interrupt dispatch table has 16- 1 – Interrupt dispatch table has 32-	as 16-bit IDT is h bit entrie	t entries, eld in the s.	and all e	xception	handlers	must res	side in the	first 12	8K of the	
SR	The Short Register bit enables a c R13, and RA are extended to 32 b these "short registers" are paired to extended RA register, and address in place of the index addressing wi 0 - 32-bit registers are used. 1 - 16-bit registers are used (CR10	its. In the ogether for displace th these	e CR16B or 32-bit ements re displace	large mo operation elative to	del, only s. In this	the lowe mode, th	r 16 bits ne (RA, F	of these r (13) regis	egisters ter pair i	are used is used as	, and s the

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

5.5 ADDRESSING MODES

The CR16CPlus CPU core implements a load/store architecture, in which arithmetic and logical instructions operate on register operands. Memory operands are made accessible in registers using load and store instructions. For efficient implementation of I/O-intensive embedded applications, the architecture also provides a set of bit operations that operate on memory operands.

The load and store instructions support these addressing modes: register/pair, immediate, relative, absolute, and index addressing. When register pairs are used, the lower bits are in the lower index register and the upper bits are in the higher index register. When the CFG.SR bit is clear, the 32- bit registers R12, R13, RA, and SP are also treated as register pairs.

References to register pairs in assembly language use parentheses. With a register pair, the lower numbered register pair must be on the right. For example,

jump (r5, r4)

load \$4(r4,r3), (r6,r5)

load \$5(r12), (r13)

The instruction set supports the following addressing modes:

Register/Pair Mode	In register/pair mode, the operand is held in a general-purpose register, or in a general- purpose register pair. For example, the following instruction adds the contents of the low byte of register r1 to the contents of the low byte of r2, and places the result in the low byte register r2. The high byte of register r2 is not modified. ADDB R1, R2
Immediate Mode	In immediate mode, the operand is a constant value which is encoded in the instruction. For example, the following instruction multiplies the value of r4 by 4 and places the result in r4. MULW \$4, R4
Relative Mode	In relative mode, the operand is addressed using a relative value (displacement) encoded in the instruction. This displacement is relative to the current Program Counter (PC), a general-purpose register, or a register pair. In branch instructions, the displacement is always relative to the current value of the PC Register. For example, the following instruction causes an unconditional branch to an address 10 ahead of the current PC. BR *+10 In another example, the operand resides in memory. Its address is obtained by adding a displacement encoded in the instruction to the contents of register r5. The address calculation does not modify the contents of register r5. LOADW 12(R5), R6 The following example calculates the address of a source operand by adding a displacement of 4 to the contents of a register pair (r5, r4) and loads this operand into the register pair (r7, r6). r7 receives the high word of the operand, and r6 receives the low word. LOADD 4(r5, r4), (r7, r6)
Index Mode	 In index mode, the operand address is calculated with a base address held in either R12 or R13. The CFG.SR bit must be clear to use this mode. For relative mode operands, the memory address is calculated by adding the value of a register pair and a displacement to the base address. The displacement can be a 14 or 20-bit unsigned value, which is encoded in the instruction. For absolute mode operands, the memory address is calculated by adding a 20-bit absolute address encoded in the instruction to the base address. In the following example, the operand address is the sum of the displacement 4, the contents of the register pair (r5,r4), and the base address held in register r12. The word at this address is loaded into register r6. LOADW [r12]4(r5, r4), r6
Absolute Mode	In absolute mode, the operand is located in memory, and its address is encoded in the instruction (normally 20 or 24 bits). For example, the following instruction loads the byte at address 4000 into the lower 8 bits of register r6. LOADB 4000, r6

For additional information on the addressing modes, see the CompactRISC CR16C Programmer's Reference Manual

5.6 STACKS

A stack is a last-in, first-out data structure for dynamic storage of data and addresses. A stack consists of a block of memory used to hold the data and a pointer to the top of the stack. As more data is pushed onto a stack, the stack grows downward in memory. The CR16CPlus supports two types of stacks: the interrupt stack and program stacks.

5.6.1 Interrupt Stack

The processor uses the interrupt stack to save and restore the program state during the exception handling. Hardware automatically pushes this data onto the interrupt stack before entering an exception handler. When the exception handler returns, hardware restores the processor state with data popped from the interrupt stack. The interrupt stack pointer is held in the ISP register.

5.6.2 Program Stack

The program stack is normally used by software to save and restore register values on subroutine entry and exit, hold local and temporary variables, and hold parameters passed between the calling routine and the subroutine. The only hardware mechanisms which operate on the program stack are the PUSH, POP, and POPRET instructions.

5.6.3 User and Supervisor Stack Pointers

To support multitasking operating systems, support is provided for two program stack pointers: a user stack pointer and a supervisor stack pointer. When the PSR.U bit is clear, the SP register is used for all program stack operations. This is the default mode when the user/supervisor protection mechanism is not used, and it is the supervisor mode when protection is used.

When the PSR.U bit is set, the processor is in user mode, and the USP register is used as the program stack pointer. User mode can only be entered using the JUSR instruction, which performs a jump and sets the PSR.U bit. User mode is exited when an exception is taken and re-entered when the exception handler returns. In user mode, the LPRD instruction cannot be used to change the state of processor registers (such as the PSR).

5.7 INSTRUCTION SET

 Table 5-1 lists the operand specifiers for the instruction set, and Table 5-2 is a summary of all instructions.

 For each instruction, the table shows the mnemonic and a brief description of the operation performed.

In the mnemonic column, the lower-case letter "i" is used to indicate the type of integer that the instruction operates on, either "B" for byte or "W" for word. For example, the notation ADDi for the "add" instruction means that there are two forms of this instruction, ADDB and ADDW, which operate on bytes and words, respectively.

Similarly, the lower-case string "cond" is used to indicate the type of condition tested by the instruction. For example, the notation Jcond represents a class of conditional jump instructions: JEQ for Jump on Equal, JNE for Jump on Not Equal, and so on. For detailed information on all instructions, see the *CompactRISC CR16C Programmer's Reference Manual*.

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

STRUMENTS

EXAS

Table 5-1. Key to Operand Specifiers

Operand Specifier	Description
abs	Absolute address
disp	Displacement (numeric suffix indicates number of bits)
imm	Immediate operand (numeric suffix indicates number of bits)
Iposition	Bit position in memory
Rbase	Base register (relative mode)
Rdest	Destination register
Rindex	Index register
RPbase, RPbasex	Base register pair (relative mode)
RPdest	Destination register pair
RPlink	Link register pair
Rposition	Bit position in register
Rproc	16-bit processor register
Rprocd	32-bit processor register
RPsrc	Source register pair
RPtarget	Target register pair
Rsrc, Rsrc1, Rsrc2	Source register

Table 5-2. Instruction Set Summary

Mnemonic	Operands	Description
MOVi	Rsrc/imm, Rdest	Move
MOVXB	Rsrc, Rdest	Move with sign extension
MOVZB	Rsrc, Rdest	Move with zero extension
MOVXW	Rsrc, RPdest	Move with sign extension
MOVZW	Rsrc, RPdest	Move with zero extension
MOVD	imm, RPdest	Move immediate to register-pair
	RPsrc, RPdest	Move between register-pairs
ADD[U]i	Rsrc/imm, Rdest	Add
ADDCi	Rsrc/imm, Rdest	Add with carry
ADDD	RPsrc/imm, RPdest	Add with RP or immediate.
MACQWa	Rsrc1, Rsrc2, RPdest	Multiply signed Q15: RPdest := RPdest + (Rsrc1 × Rsrc2)
MACSWa	Rsrc1, Rsrc2, RPdest	Multiply signed and add result: RPdest := RPdest + (Rsrc1 × Rsrc2)
MACUWa	Rsrc1, Rsrc2, RPdest	Multiply unsigned and add result: RPdest := RPdest + (Rsrc1 × Rsrc2)
MULi	Rsrc/imm, Rdest	Multiply: Rdest(8) := Rdest(8) × Rsrc(8)/imm Rdest(16) := Rdest(16) × Rsrc(16)/imm
MULSB	Rsrc, Rdest	Multiply: Rdest(16) := Rdest(8) × Rsrc(8)
MULSW	Rsrc, RPdest	Multiply: RPdest := RPdest(16) × Rsrc(16)
MULUW	Rsrc, RPdest	Multiply: RPdest := RPdest(16) × Rsrc(16);
SUBi	Rsrc/imm, Rdest	Subtract: (Rdest := Rdest - Rsrc/imm)
SUBD	RPsrc/imm, RPdest	Subtract: (RPdest := RPdest - RPsrc/imm)
SUBCi	Rsrc/imm, Rdest	Subtract with carry: (Rdest := Rdest - Rsrc/imm)
СМРі	Rsrc/imm, Rdest	Compare Rdest - Rsrc/imm
CMPD	RPsrc/imm, RPdest	Compare RPdest - RPsrc/imm
BEQ0i	Rsrc, disp	Compare Rsrc to 0 and branch if EQUAL
BNE0i	Rsrc, disp	Compare Rsrc to 0 and branch if NOT EQUAL
ANDi	Rsrc/imm, Rdest	Logical AND: Rdest := Rdest & Rsrc/imm

Submit Documentation Feedback Product Folder Links: CP3CN37

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

Table 5-2.	Instruction	Set	Summarv	(continued))
		000	Cannary	loonnaoa	,

ANDD	RPsrc/imm, RPdest	Logical AND: RPdest := RPsrc & RPsrc/imm				
ORi	Rsrc/imm, Rdest	Logical OR: Rdest := Rdest Rsrc/imm				
ORD	RPsrc/imm, RPdest	Logical OR: Rdest := RPdest RPsrc/imm				
Scond	Rdest	Save condition code as boolean				
XORi	Rsrc/imm, Rdest	Logical exclusive OR: Rdest := Rdest ^ Rsrc/imm				
XORD	RPsrc/imm, RPdest	Logical exclusive OR: Rdest := RPdest ^ RPsrc/imm				
ASHUi	Rsrc/imm, Rdest	Arithmetic left/right shift				
ASHUD	Rsrc/imm, RPdest	Arithmetic left/right shift				
LSHi	Rsrc/imm, Rdest	Logical left/right shift				
LSHD	Rsrc/imm, RPdest	Logical left/right shift				
SBITi	Iposition, disp(Rbase)	(BecaSet a bit in memory use this instruction treats the destination as a read- modify-write operand, it not be used to set bits in write-only registers.) Set a bit i				
	Iposition, disp(RPbase)					
	Iposition, (Rindex)disp(RPbasex)	memory				
	Iposition, abs					
	Iposition, (Rindex)abs					
CBITi	Iposition, disp(Rbase)	Clear a bit in memory				
	Iposition, disp(RPbase)					
	Iposition, (Rindex)disp(RPbasex)					
	Iposition, abs					
	Iposition, (Rindex)abs					
TBIT	Rposition/imm, Rsrc	Test a bit in a register				
TBITi	Iposition, disp(Rbase)	Test a bit in memory				
	Iposition, disp(RPbase)	_				
	Iposition, (Rindex)disp(RPbasex)	_				
	Iposition, abs	_				
	Iposition, (Rindex)abs					
LPR	Rsrc, Rproc	Load processor register				
LPRD	RPsrc, Rprocd	Load double processor register				
SPR	Rproc, Rdest	Store processor register				
SPRD	Rprocd, RPdest	Store 32-bit processor register				
Bcond	disp9	Conditional branch				
Doona	disp17					
	disp24					
BAL	RPlink, disp24	Branch and link				
BR	disp9	Branch				
DK	disp9 disp17					
	disp24					
EXCP		Trap (vector)				
	vector					
Jcond	RPtarget	Conditional Jump to a large address				
JAL	RA, RPtarget,	Jump and link to a large address				
	RPlink, RPtarget					
JUMP	RPtarget	Jump				
JUSR	RPtarget	Jump and set PSR.U				
RETX		Return from exception				
PUSH	imm, Rsrc, RA	Push "imm" number of registers on user stack, starting with Rsrc and possibly including RA				
POP	imm, Rdest, RA	Restore "imm" number of registers from user stack, starting with				

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

		n Set Summary (continued)
LOADi	disp(Rbase), Rdest	Load (register relative)
	abs, Rdest	Load (absolute)
	(Rindex)abs, Rdest	Load (absolute index relative)
	(Rindex)disp(RPbasex), Rdest	Load (register relative index)
	disp(RPbase), Rdest	Load (register pair relative)
LOADD	disp(Rbase), Rdest	Load (register relative)
	abs, Rdest	Load (absolute)
	(Rindex)abs, Rdest	Load (absolute index relative)
	(Rindex)disp(RPbasex), Rdest	Load (register pair relative index)
	disp(RPbase), Rdest	Load (register pair relative)
STORi	Rsrc, disp(Rbase)	Store (register relative)
	Rsrc, disp(RPbase)	Store (register pair relative)
	Rsrc, abs	Store (absolute)
	Rsrc, (Rindex)disp(RPbasex)	Store (register pair relative index)
	Rsrc, (Rindex)abs	Store (absolute index)
STORD	RPsrc, disp(Rbase)	Store (register relative)
	RPsrc, disp(RPbase)	Store (register pair relative)
	RPsrc, abs	Store (absolute)
	RPsrc, (Rindex)disp(RPbasex)	Store (register pair index relative)
	RPsrc, (Rindex)abs	Store (absolute index relative)
STOR IMM	imm4, disp(Rbase)	Store unsigned 4-bit immediate value extended to operand length in
	imm4, disp(RPbase)	memory
	imm4, (Rindex)disp(RPbasex)	
	imm4, abs	
	imm4, (Rindex)abs	
LOADM	imm3	Load 1 to 8 registers (R2-R5, R8-R11) from memory starting at (R0)
LOADMP	imm3	Load 1 to 8 registers (R2-R5, R8-R11) from memory starting at (R1, R0)
STORM	STORM imm3	Store 1 to 8 registers (R2-R5, R8-R11) to memory starting at (R2)
STORMP	imm3	Store 1 to 8 registers (R2-R5, R8-R11) to memory starting at (R7,R6)
DI		Disable maskable interrupts
EI		Enable maskable interrupts
EIWAIT		Enable maskable interrupts and wait for interrupt
NOP		No operation
WAIT		Wait for interrupt
CINV [i]		Invalidate instruction cache

Table 5-2. Instruction Set Summary (continued)

6 MEMORY

The CP3CN37 supports a uniform 256M-byte linear address space. Program memory must reside in the first 16M bytes of the address space. lists the types of memory and peripherals that occupy this memory space. Reserved addresses must not be read or written.

Start Address	End Address	Size in Bytes	Description
0000 0000h	0000 7FFFh	32K	System RAM
0000 8000h	0001 FFFFh	96K	Reserved
0002 0000h	00FD FFFFh	16128K	Available for External Bus Devices
00FE 0000h	00FE 3FFFh	16K	ROM Bootloader
00FE 4000h	00FE FFFFh	48K	Reserved
00FF 0000h	00FF 03FFh	1K	External Bus Interface Unit Registers
00FF 0400h	00FF 07FFh	1K	DMA Controller Registers
00FF 0800h	00FF 0FFFh	2K	USB Controller
00FF 1000h	00FF 3FFFh	12K	Reserved
00FF 4000h	00FF 43FFh	1K	I2S Digital Audio Interface
00FF 4400h	00FF 47FFh	1K	Audio Codec
00FF 4800h	00FF 4BFFh	1K	CVSD/PCM Converter 0
00FF 4C00h	00FF 4FFFh	1K	CVSD/PCM Converter 1
00FF 5000h	00FF 53FFh	1K	Advanced Audio Interface
00FF 5400h	00FF 5BFFh	2K	Reserved
00FF 5C00h	00FF 5FFFh	1K	UART3
00FF 6000h	00FF 63FFh	1K	Multi-Function Timer 1
00FF 6400h	00FF 67FFh	1K	Port G
00FF 6800h	00FF 7FFFh	6K	Reserved
00FF 8000h	00FF 83FFh	1K	ACCESS.bus Interface
00FF 8400h	00FF 87FFh	1K	Microwire/SPI Interface
00FF 8800h	00FF 8BFFh	1K	Versatile Timer Unit 0
00FF 8C00h	00FF 8FFFh	1K	Versatile Timer Unit 1
00FF 9000h	00FF 93FFh	1K	Multi-Function Timer 0
00FF 9400h	00FF 97FFh	1K	USART0
00FF 9800h	00FF 9BFFh	1K	USART1
00FF 9C00h	00FF 9FFFh	1K	UART2
00FF A000h	00FF A3FFh	1K	Timing and Watchdog Module
00FF A400h	00FF A7FFh	1K	Power Management Module
00FF A800h	00FF ABFFh	1K	Real-Time Clock
00FF AC00h	00FF AFFFh	1K	Analog/Digital Converter
00FF B000h	00FF BBFFh	3K	Reserved
00FF BC00h	00FF BFFFh	1K	CAN Buffers and Registers
00FF C000h	00FF C3FFh	1K	Multi-Input Wake-Up Unit
00FF C400h	00FF C7FFh	1K	Port E
00FF C800h	00FF CBFFh	1K	Port F
00FF CC00h	00FF CFFFh	1K	Port H
00FF D000h	00FF F3FFh	9K	Reserved
00FF F400h	00FF F7FFh	1K	System Configuration
00FF F800h	00FF FBFFh	1K	Reserved
00FF FC00h	00FF FFFFh	1K	Interrupt Control Unit (registers start at 00FF FE00h)
0100 0000h	FFFF FFFFh	4G - 16M	Available for External Bus Devices (data space only)

Table 6-1. CP3CN37 Memory Map

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com

7 INSTRUCTION CACHE

The CPU instruction cache has the following features:

- 4K bytes data memory
- 4-way set-associative organization
- · Critical word first, with wrapping cache entry fill
- Pseudo Least Recently Used (PLRU) allocation policy
- Cache locking support
- Cache invalidation support

The instruction cache is enabled by setting the IC bit in the CFG register. At reset, the cache is disabled by default. When caching is enabled, the instruction cache greatly accelerates program execution by satisfying most instruction fetches. It also greatly reduces bus traffic to external memory, which increases the bandwidth available for the DMA controllers.

The cache is organized as four ways of 64 entries each, as shown in Figure 7-1. Each entry holds 16 data bytes (8 instructions).

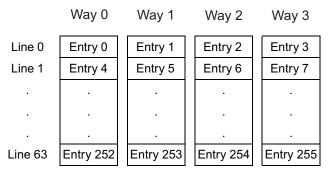


Figure 7-1. CPU Instruction Cache Organization

Each entry consists of:

- Valid Bit—Indicates whether the entry holds valid data. The valid bit is cleared when the cache is disabled, when the CINV [i] instruction is executed, and at reset. The valid bit is set when the entry is loaded.
- Address Tag—Holds address bits 31:10 associated with the entry. The address tag is loaded when a cache entry is allocated on a cache miss.
- Data—Eight bytes of data. The data is passed to the CPU on a cache hit, and it is loaded when a cache entry is allocated on a cache miss.

On an instruction fetch, address bits 9:4 select one of the lines. Any of the four ways may hold the target of the instruction fetch. The tags in each of the four ways are compared against bits 32:10 of the instruction address to determine which way (if any) holds the data. If one of the entries has matching address bits and its valid bit is set, the instruction fetch is a cache hit, and the cache data is passed to the CPU to satisfy the instruction fetch.

If none of the valid tags match the instruction address bits, the instruction fetch is a cache miss, and a bus cycle will be generated on the CPU core bus to read the memory location containing the target of the instruction fetch. When the memory data is received, it is loaded into the cache and passed to the CPU, which releases the CPU to continue execution. Three subsequent bus cycles read the remainder of an aligned 16-byte block to fill a cache entry.

A PLRU algorithm is used to allocate a cache entry in one of the four ways to receive the block. For each line, there are three bits B2:0 used by the algorithm. These bits are not directly visible to application software, but they may be indirectly visible by their effect on the execution speed of some programs. (It would be unusual for execution speed to be significantly affected.)

The way selected by the PLRU bits is shown in Table 7-1.

B2:0	Way Selected for Allocation	
000	Way 0	
001	Way 2	
010	Way 1	
011	Way 2	
100	Way 0	
101	Way 3	
110	Way 1	
111	Way 3	

Table 7-1. Way Selected for Allocation on Cache Miss

The PLRU bits are cleared when the cache is disabled, and they are updated on a cache hit. Table 7-2 shows the next state of the PLRU bits when they are updated.

Way Selected by Cache Hit	B2	B1	B0
Way 0	Unchanged	1	1
Way 1	Unchanged	0	1
Way 2	1	Unchanged	0
Way 3	0	Unchanged	0

Table 7-2. Next State of PLRU Bits on Cache Hit

7.1 CACHE LOCKING

Cache locking is typically used for performance-sensitive algorithms, to guarantee that the program memory will be in the cache during execution. It may also be used when deterministic behavior is required, to guarantee that programs always execute in the same number of cycles.

When the cache is locked, the contents of the cache do not change. The cache is locked by setting the LIC bit in the CFG register.

When a cache miss occurs while the cache is locked, no cache entry is allocated on a cache miss, and the PLRU bits are not updated.

When a cache hit occurs while the cache is locked, the cache data is passed to the CPU, and the PLRU bits are updated. However, the PLRU bits have no effect while the cache is locked, because no new cache entries are allocated.

7.2 CACHE INVALIDATION

The cache does not snoop any bus cycles. Software is responsible for invalidating the cache when the CPU or any other device writes to program memory.

The cache is invalidated by executing the CINV [i] instruction. This clears the valid bits for all of the cache entries. The cache is automatically invalidated at reset and when it is disabled.

8 CPU CORE BUS ARBITRATION

The CPU core AHB bus can be controlled by either of two bus masters:

- CPU Core
- CPU DMA Controller

The bus arbiter implements two levels of priority arbitration among the potential bus masters:

Group Priority—each potential bus master is assigned to one of four priority groups. The priority among groups is linear, with group A at highest priority and group D at lowest priority.

Priority within a Group—either of two arbitration policies may be selected for a group: linear priority and round-robin. Linear priority gives bus ownership to the requesting device with the lowest master number. Round-robin assigns bus ownership in a cyclic sequence (for example, 2-3-4-2-3-4) among requesting devices.

Group priority is always considered before priority within a group. Priority within a group is only considered after the group is selected.

With only two potential bus masters, the bus arbitration mechanism may seem excessively complex. However, this architecture is designed for scalability to future devices which may have a greater number of potential bus masters.

The default register settings for the bus arbiter provide an efficient arbitration policy across a wide range of applications:

- One Group—all potential bus masters are assigned to group A.
- Round-Robin Arbitration—a round-robin policy avoids starving any potential bus master of bandwidth.
- Default Bus Master is CPU—when no potential bus master asserts a request for control of the bus, the CPU is given ownership of the bus. This avoids stalling the CPU when it needs to access an idle bus.

When a linear priority policy is selected for a priority group, the master number is used to resolve arbitration among devices within that group, with lower numbers receiving higher priority. Table 8-1 shows the assignment of master numbers.

Table 8-1.	Master	Number	Assignment
------------	--------	--------	------------

Potential Bus Master	Master Number
CPU	2
CPU DMA Controller	3

Whether or not any default settings are changed, software should lock the bus arbiter configuration during system initialization by writing 1 to the LOCK bit in the ARBCFGLK register.

8.1 BUS ARBITER REGISTERS

The bus arbiter registers control and provide status for certain aspects of the bus arbiter. The bus arbiter registers are listed in Table 8-2.

Table 8-2. Bus Arbiter Registers

Name	Address	Description
MASTGP	FF F000h	Master Group Register
ARBALGO	FF F004h	Arbitration Algorithm Register
DFTMAST	FF F008h	Default Master Register
ARBCFGLK	FF F00ch	Arbiter Configuration Lock Register

8.1.1 Master Group Register (MASTGP)

The MASTGP register is a 32-bit, read/write register that se- lects the priority group for each potential bus master. After reset, this register is clear.

31	6	5	4	3	2	1	0
	Reserved	MA	AS4	MA	4 S3	MA	AS2
MASn	The Master field selects the priority group for the corresponding poten $00 - Group A$.	tial bus r	naster.				

01 – Group B.

10 - Group C.

11 - Group D.

8.1.2 Arbitration Algorithm Register (ARBALGO)

The ARBALGO register is a 32-bit, read/write register that selects the arbitration policy used for each priority group. Af- ter reset, this register is initialized to 0000 0001h.

31		4	3	2	1	0
	Reserved		GRD	GRC	GRB	GRA
GRn	The Group bit selects the arbitration policy for the corresponding group.					

The Group bit selects the arbitration policy for the corresponding group. 0 - Linear priority based on master number.

1 - Round-robin.

8.1.3 Default Master Register (DFTMAST)

The DFTMAST register is a 32-bit, read/write register that selects the master number of the default bus master. After reset, this register is initialized to 0000 0002h.

31	4	3		0
	Reserved		DFTMAST	
DFTMAST	The Default Master field specifies the master number. There are two defined values: $2h = CPL$			

3h - CPU DMA controller.

8.1.4 Arbiter Configuration Lock Register (ARBCFGLK)

The ARBALGO register is a 32-bit, read/write register that is used to lock the bus arbiter configuration. When the con-figuration is locked, writes to the bus arbiter registers are ig-nored. Reads are unaffected. Once locked, the configuration may not be unlocked until the device is reset. After reset, this register is initialized to 0000 0000h.

31		1	0
	Reserved		LOCK
LOCK	The Lock bit controls whether the bus arbiter registers are locked.		

0 - Unlocked. 1 - Locked.

9 EXTERNAL BUS INTERFACE UNIT

The External Bus Interface Unit (EBIU) provides a memory bus interface that supports three types of external memory:

- Asynchronous RAM
- Page-Mode Flash Memory
- ROM

The EBIU provides programmable chip select outputs $\overline{\text{XCS}[1:0]}$ for two memory devices, depending on package type. The memory type, base address, width (8 or 16 bits), size, and timing are independently programmable for each of the memory devices.

The physical address space available on the external bus does not occupy a fixed location in the address space of the CPU. The location(s) are programmable in the EBIU registers. The EBIU asserts a chip select to an external memory device when an on-chip bus uses a region of its address space mapped to an external memory device. There are two regions in the on-chip bus address space which are available for external devices:

- 0002 0000h to 00FD FFFFh—a 16M-byte space, minus a 128K space at the bottom and a 128K space at the top
- 0100 0000h to 0FFF FFFFh—a 240M-byte space (256M, minus a 16M space at the bottom)

The EBIU does not relocate the address passed from the on-chip AHB bus to the external bus. The mapping only affects activation of the chip select signals. Any of the chip selects may be configured for either of two regions.

9.1 EXTERNAL BUS SIGNALS

There are 6 types of bus signals, as shown in Table 9-1.

Name	Description	
XA[19:0]	Address Bus	
Xd[15:0]	Data Bus	
XWE	Write Enable	
XOE	Output Enable	
XBE[1:0]	Byte Enables	
XCS[1:0]	Chip Selects	

Table 9-1. External Bus Signals

The byte order is little-endian (LSB at lowest address). The EBIU shifts the address to correspond to the width of the external memory device, so the XA address may be either a byte or word address. Mixing of memory types is allowed.

CP3CN37

www.ti.com

9.2 DEFAULT MEMORY CONFIGURATION

The default configuration after reset for the external memory devices is shown in Table 9-2. The cycle times are quoted in HCLK Clock periods. By default, the HCLK Clock frequency following reset is the input clock frequency (X1CLKI/ X1CLKO or CLKIN) divided by 16.

Both external memory spaces are configured for 8M bytes. Because the maximum memory size supported by the external bus is 2M bytes, the implemented memory will be aliased (that is, multiple images will appear) within the 8M region.

Beneration	Chip Select			
Parameter	XCS1	XCS0		
Memory Type	RAM	RAM		
Base Address	0080 0000h	0040 0000h		
Memory Size	8M Bytes	8M Bytes		
Memory Width	16 Bits	16 Bits		
Read Cycle Time	7 Cycles	7 Cycles		
RAM Write Address Setup Time	1 Cycle	1 Cycle		
RAM Write Address and Data Hold Time	1 Cycle	1 cycle		
RAM Write Pulse Width	5 Cycles	5 Cycles		
Bus Turnaround Time	2 Cycles	2 Cycles		
Page-Mode	Disabled	Disabled		
Page-Mode Read Cycle Time	4 Cycles	2 Cycles		
Page Size	4 Words	4 Words		
Memory Read Pipe Stages	0	0		

Table 9-2. Default Memory Configuration

9.3 EXTERNAL BUS CYCLE TIMING

Figure 9-1 shows the timing of a read cycle on the external memory bus.

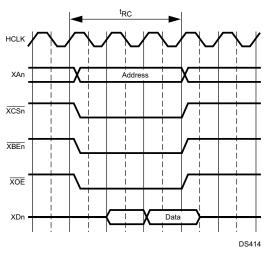


Figure 9-1. Read Cycle Timing

Figure 9-2 shows the timing of a write cycle on the external memory bus.

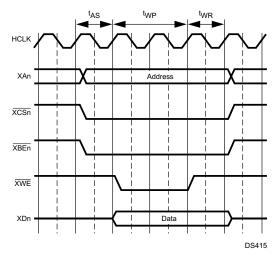


Figure 9-2. Write Cycle Timing

An 8-level write buffer allows the EBIU to accept a write cycle and release the bus master (CPU or one of the DMA controllers) to continue execution without waiting for the write data to propagate to external memory.

A read cycle is not allowed to propagate to external memory while there are any writes pending in the write buffer. The read cycle is stalled until the write buffer has been flushed to memory. This mechanism enforces memory coherency when the target of a read is modified by a pending write. In some cases, software performance can be optimized by grouping writes together (for example, by loop unrolling) to avoid alternating between reads and writes.

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

Figure 21-9 shows the timing of page-mode read cycles.

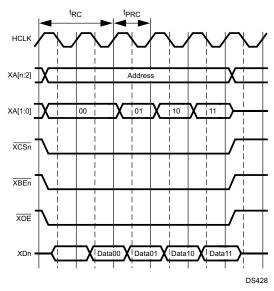


Figure 9-3. Pace-Mode Read Cycle Timing

Figure 9-4 shows the read-to-write and write-to-read bus turnaround timing.

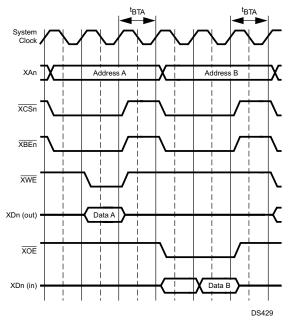


Figure 9-4. Bus Turnaround Timing

CP3CN37

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

9.4 EBIU REGISTERS

For all registers, the contents should only be changed once, in the initialization routine after reset.

The EBIU has two global control registers, two registers specific to each chip select, and 3 registers for defining 3 sets of timing parameters. Any of the chip selects may use any of the timing parameters.

Name	Address	Description	
SMCTLR	FF 00A4h	Static Memory Control Register	
SCSLR0	FF 0014h	Chip Select Register 0	
SMSKR0	FF 0054h	Mask Register 0	
SCSLR1	FF 0018h	Chip Select Register 1	
SMSKR1	FF 0058h	Mask Register 1	
SMTMGR_SET0	FF 0094h	Static Memory Timing Register 0	
SMTMGR_SET1	FF 0098h	Static Memory Timing Register 1	
SMTMGR_SET2	FF 009Ch	Static Memory Timing Register 2	
FLASH_TRPDR	FF 00A0h	Flash t _{RPD} Timing Register	

Table 9-3. Bus Control Registers

9.4.1 Static Memory Control Register (SMCTLR)

The SMCTLR register is a 32-bit, read/write register that selects the bus width of the memory devices associated with the chip selects. At reset, the register is initialized to 0000 0000h, which selects 16-bit width for both external memory devices. The register format is shown below.

31		13	12	10	9	7	6	0
	Reserved.		SM_DW_S1		SM_DW_S0		Res.	
SM_DW_S0	The Static Memory Data Bus Width field selects the width of 000 – 16 bits. 100 – 8 bits.	the XCS) device.					
SM_DW_S1	The Static Memory Data Bus Width field selects the width of 000 – 16 bits. 100 – 8 bits.	the XCS	l device.					

9.4.2 Chip Select Register n (SCSLRn)

The SCSLRn registers are 32-bit, read/write registers that specify base addresses for the chip selects. Only bits 31:16 can be used, because the minimum memory device size is 64K bytes. Additional bits are masked off if the size exceeds 64K. At reset, the SCSLR0 register is initialized to 0040 0000h, and SCSLR1 is initialized to 0080 0000h. The register format is shown below.

31	16	15	0
EXT_BASE_ADDR		Reserved	

EXT_BASE_ADDR The External Base Address field specifies the base address of the external memory device enabled by the chip select.

www.ti.com

9.4.3 Mask Register n (SMSKRn)

The SMSKRn registers are 32-bit, read/write registers that specify timing parameters, memory type, and memory size for the chip selects. At reset, the SMSKR0 register is initialized to 0000 0028h, and SMSKR1 is initialized to 0000 0128h. The register format is shown below.

31		10	8	7	5	4	0	
	Reserved	REG	_SEL	MEM_	TYPE	MEM_	SIZE	
MEM_SIZE	The Memory SIze field specifies the size of the external me 00000 – No memory connected. 00001 – 64K bytes. 00010 – 128K bytes. 00010 – 256K bytes. 00100 – 512K bytes. 00101 – 1M bytes. 00110 – 2M bytes.	emory devid	ce. Values	s of 07h s	to 1Fh ar	e reserve	ed.	
MEM_TYPE	The Memory Type field specifies the type of external memo 000 – Reserved. 001 – RAM. 010 – Flash memory. 011 – ROM.	ory device.						
REG_SEL	The Register Select field specifies timing parameters in on external memory device. 000 – SMTMGR_SET0 register. 001 – SMTMGR_SET1 register. 010 – SMTMGR_SET2 register.	e of the thre	ee SMTM	GR_SET	n registe	rs to be i	used with	the

9.4.4 Static Memory Timing Register n (SMTMGR_SETn)

The SMTMGR_SETn registers are 32-bit, read/write registers that specify timing parameters that can be selected by the REG_SEL field in the SMSKRn registers. Any SMSKRn register may select any SMTMGR_SETn register. At reset, the SMTMGR_SET0 register is initialized to 000A 1146h, the SMTMGR_SET1 register is initialized to 001A 1146h, and the SMTMGR_SET2 register is initialized to 0022 1146h. The register format is shown below.

18		16	15				10	9		8	7	6	5	0
	T_BTA				T_WP				T_WR		T	_AS	T_	RC
31	30	29	28	27	26	25	24	23	22					19
Re	es.	SM	RP	Re	es.	F	PS	PM			T_	PRC		
T_RC	T_RC The t _{RC} field + 1 specifies the number of HCLK Clock cycles in a read cycle.													
T_AS														
T_WR		The t _{WR}	field spe	cifies the	number	of HCLK	Clock c	ycles in tl	he write a	ddress o	data hold time	e.		
T_WP		The t _{WP}	field + 1	specifies	the num	ber of H	CLK Clo	ck cycles	in a write	e pulse.				
T_BTA					s the nur read turr		ICLK Clo	ock cycles	in the bu	is turnar	ound time. T	he same value	is used	for
T_PRC		The t PR	_C field +	1 specifi	es the nu	mber of	HCLK CI	lock cycle	s in the p	age-mo	de read cycle	e time.		
PM														
PS														
SMRP		The State the data		ory Read	Pipe field	l specifie	es the nu	mber of r	egisters i	nserted i	nto the read	data path for c	orrectly I	atching

Copyright © 2007–2013, Texas Instruments Incorporated

9.4.5 Flash t_{RPD} Timing Register (FLASH_TRPDR)

The FLASH_TRPDR register is a 32-bit, read/write register that specifies the number of clock cycles between flash memory reset/power-down and the first flash read/write cycle. At reset, the FLASH_TRPDR register is initialized to 0000 00C8h.

31		12	11		0
	Reserved			T_RPD	

 T_RPD The t_{RPD} field + 1 specifies the number of clock cycles between flash memory reset/ power-down and the first flash memory read/ write cycles. At reset, the default is 201 cycles (value = C8h = 200d).

9.5 USAGE NOTES

The EBIU registers must be programmed in the following sequence:

- 1. SCSLRn
- 2. SMSKRn
- 3. SMTMGR_SETn
- 4. FLASH_TRPDR
- 5. SMCTRL

10 SYSTEM CONFIGURATION

10.1 OPERATING ENVIRONMENT

The operating environment selects the reset vector (boot address). The operating environment is controlled by the states sampled from the ENV[1:0] pins at reset, as shown in Figure 23-9. Internal pullups on the ENV[1:0] pins select ERE16L mode if these pins are allowed to float.

Table 10-1. Operating Environment

ENV[1:0]	Operating Environment	Reset Vector
00	ROM32 mode	00FE 0000h
11	ERE16L mode	0040 0000h
10	ERE16H mode	0080 0000h

10.2 FREEZE MODE

For debugging purposes, a Freeze mode is available which has the following effects:

- Disables maskable interrupts.
- Suspends DMA transactions.
- Inhibits certain state changes in the following modules (see individual module descriptions for details): Advanced Audio Interface, A/D Converter, Codec, CVSD/ PCM Converters, Multi-Function Timers, Timing and Watchdog Module, and Versatile Timer Units.
- Inhibits automatic clear-on-read function applied to the register bits listed in Table 10-2.

Module	Registers	Bits
ACCESS.bus	ACBST	SDAST
A/D Converter	ADCRESLT	ADC_DONE, ADC_OFLW, SIGN, ADC_RESULT
	ARSCR	RXO, RXE, RXF, RXAF
Advanced Audio Interface (AAI)	ATSCR	ADCDATA
Codec	TCDCADCn	ADCDATA
Microwire/SPI	MWDAT	RBF
Timing and Watchdog Module	TOCSR	TC
USART0	URBUFn	URBF
UART 1,2,3	USTATn	UPE, UFE, UDOE, UBKD

Table 10-2. Register Bits Affected By Freeze Mode

Freeze mode can be entered by setting the FREEZE bit in the MCFG register or using a mechanism enabled through the Serial Debug Interface (SDI).

Note: Debugging tools may assert Freeze mode to gather information, which may cause periodic fluctuations in response (bus availability, interrupt latency, and so on.). Anomalous behavior often may be traced to the activity of these tools.

10.3 SYSTEM CONFIGURATION REGISTERS

The system configuration registers control and provide status for certain aspects of device setup and operation, such as indicating the states sampled from the ENV[1:0] inputs. The system configuration registers are listed in Table 10-3.

Name	Address	Description		
MCFG	FF 400h	Module Configuration Register		
MSTAT	FF 404h	Module Status Register		
SWRESET	FF F408h	Software Reset Register		
SYSCFG	FF F40Ch	System Configuration Register		

Table 10-3. System Configuration Registers

10.4 MODULE CONFIGURATION REGISTER (MCFG)

The MCFG register is a byte-wide, read/write register that selects the clock output features of the device and enables Freeze mode. The MCFG register format is shown below. At reset, the MCFG register is initialized to 00h.

7	6	5	4	3	2	1	0				
Res.	FREEZE	Rese	erved	ENV1SEL	ENV0SEL	ENV10E	ENV0OE				
ENV0OE	 The ENV0 Output Enable bit enables driving an internal clock signal selected by the ENV0SEL bit on the ENV0 pin. If no signal is driven on the ENV0 pin, it will be undriven (high impedance) after reset. 0 – ENV0 is undriven after reset. 1 – ENV0 is driven by an internal clock signal. 										
ENV1OE	ENV1OE The ENV1 Output Enable bit enables driving an internal clock signal selected by the ENV1SEL bit on the ENV1 pin. If no signal is driven on the ENV1 pin, it will be undriven (high impedance) after reset. 0 – ENV1 is undriven after reset. 1 – ENV1 is driven by an internal clock signal.										
ENV0SEL	The ENV0 Select bit selects an internal clock signal to be available for driving on the ENV0 pin. The ENV00E bit must be set to enable driving the selected signal on the ENV0 pin. 0 – Slow Clock is available to drive on ENV0. 1 – PLL1 Clock is available to drive on ENV0.										
ENV1SEL	The ENV1 Select bit selects an internal clock signal to be available for driving on the ENV1 pin. The ENV1OE bit must be set to enable driving the selected signal on the ENV1 pin. 0 – Main Clock is available to drive on ENV1. 1 – PLL2 Clock is available to drive on ENV1.										
FREEZE The Freeze bit controls whether the device is placed in Freeze mode, which is a debugging mode that inhibits certain automatic state changes in register bits, such as timers and clear-on-read registers. See for more information about Freeze mode. The Serial Debug Interface (SDI) also has the capability of putting the device in Freeze mode through a separate mechanism. 0 – Freeze mode disabled. 1 – Freeze mode enabled.											

www.ti.com

www.ti.com

10.5 MODULE STATUS REGISTER (MSTAT)

The MSTAT register is a byte-wide, read-only register that indicates the general status of the device. The MSTAT register format is shown below. At reset, the MSTAT register is initialized to 00h, except for bits 0 and 1 which are sampled from the ENV pins.

7	6	5		2	1	0				
ISPRST	WDRST		Reserved		OE	INV				
OENV	OENV The Operating Environment bits hold the states sampled from the ENV[1:0] input pins at reset. These states are controlled by external hardware at reset and are held constant in the register until the next reset.									
WDRST	The Watchdog Reset bit indicates that a Watchdog timer reset has occurred. Write a 1 to this bit to clear it. Power-on reset also clears this bit. 0 – No Watchdog timer reset has occurred since this bit was last cleared. 1 – A Watchdog timer reset has occurred since this bit was last cleared.									
ISPRST										

10.6 SOFTWARE RESET REGISTER (SWRESET)

The SWRESET register is an 8-bit, write-only register for software-initiated reset. Two software reset sequences, SWRESET(ISP) and SWRESET(CLR), are distinguished by the ISPRST bit in the MSTAT register. SWRESET(ISP) is intended for reset to ISP software, while SWRESET(CLR) is intended for reset to application software. To initiate a SWRESET(ISP) reset, write the value E1h to the SWRESET register, followed within 127 PCLK Clock cycles by writing the value 3Eh. The reset then follows immediately. After the SWRESET(ISP) reset occurs, the ISPRST bit in the MSTAT register is set.

To initiate a SWRESET(CLR) reset, write the value E1h to the SWRESET register, followed within 127 PCLK Clock cycles by writing the value 0Eh. The reset then follows immediately. After the SWRESET(CLR) reset occurs, the ISPRST bit in the MSTAT register is clear.

10.7 SYSTEM CONFIGURATION REGISTER (SYSCFG)

The SYSCFG register is a byte-wide, read/write register that indicates the general status of the device. The SYSCFG register format is shown below. At reset, the SYSCFG register is initialized to 00h.

7	6		4	3	2	1	0		
XDPUDIS		Reserved		USBIDDIGPUEN	USBHCLKDIS	Res.	RFCKEN		
RFCKEN	The RF Clock Enable bit controls whÌether Main Clock is driven on the CLKIN/RFCK pin. 0 – Main Clock is not driven on CLKIN/RFCK. 1 – Main Clock is driven on CLKIN/RFCK.								
USBHCLKDIS		The USB Clock Disable bit controls whether the HCLK Clock to the USB module is disabled. 0 – HCLK Clock is available to the USB module. 1 – HCLK Clock is not available to the USB module.							
USBIDDIGPUE	N	The USB IDDIG Pullup Enable bit controls whether the USB module can enable the internal pullup on the PE15 port pin. This mode only applies when the IDDIG alternate function for PE15 is enabled. 0 – Internal pullup on PE15 is disabled when IDDIG alternate function is selected. 1 – USB module controls internal pullup on PE15 when IDDIG alternate function is selected.							
XDPUDIS	The XD Pullup Disable bit controls whether weak pullup resistors are enabled on the XD external data but 0 – Weak pullups on XD bus. 1 – No pullups on XD bus.						external data bus.		

11 ROM BOOTLOADER

When the ENV[1:0] pins select the ROM32 environment, the reset vector is FE 0000h, which is the start address of the on-chip 16K ROM. The ROM contains a bootloader which can be used to download and execute code in the on-chip RAM. Flexible support is provided for:

- *Clock Frequency*—the bootloader can be used at Main Clock frequencies of 3, 3.25, 4, 6, 6.5, 8, 12, 13, and 16 MHz. The Main Clock frequency is determined automatically by comparison with the 32.768 kHz Slow Clock frequency. If no external Slow Clock source is provided, the Main Clock frequency is assumed to be 12 MHz.
- UART Port and Baud Rate—the bootloader monitors the four UART ports for activity. When signal transitions oc- cur on a UART input, the bootloader measures the baud rate and waits for an ISP_HUNT_CONNECT_CLASSIC command. If this command is received within 1 second of detecting UART activity and determining the baud rate, the UART connection is used as the host interface.
- USB Connection—if an USB enumeration process completes before the ISP_HUNT_CONNECT_CLASSIC command is received on a UART port, the USB connection is used as the host interface.

The bootloader is intended to support in-system programming (ISP) and other applications across a wide range of system designs. However, the bootloader only implements a minimal set of functions for downloading an application to on-chip RAM. To support a complete set of ISP functions, such as functions for programming flash memory on the external memory bus, the host may download additional software to implement these functions.

11.1 COMMAND/RESPONSE INTERFACE

The bootloader implements a command/response interface with the host. The command formats allow implementation of functions for supporting ISP, however the bootloader only implements a set of functions sufficient for downloading and executing an application in on-chip RAM.

Command	Code	Description	
ISP_HUNT_CONNECT _CLASSIC	55h	Attempt to establish a connection with the target system.	
ISP_HUNT_CONNECT	48h Connect to target after host interface is established.		
ISP_GET_VERSION	56h	Read bootloader version.	
ISP_WRITE	57h	Write to on-chip RAM.	
ISP_GO	47h	Jump to address 0 (beginning of on-chip SRAM).	

Table 11-1. Host Commands

Table 11-2. Bootloader Responses

Response	Code	Description		
ISP_ACK_CLASSIC	32h	Connection established.		
ISP_ACK	06h	Command completed successfully.		
ISP_NACK	15h	Command failed.		

11.1.1 Size Field

Most command and response formats contain a Size field, which is a count of the number of bytes in the command or response. Only the ISP_HUNT_CONNECT_CLASSIC command and the ISP_ACK_CLASSIC response do not have this field.

11.1.2 CRC Field

www.ti.com

Most command and response formats contain a CRC field. Only the ISP HUNT CONNECT CLASSIC command and the ISP_ACK_CLASSIC response omit this field.

A CRC-16 algorithm is used, however several standard CRC-16 algorithms exist. The specific algorithm implemented by the bootloader is shown below.

```
unsigned short crc16(uint8 *message, uint16 nBytes)
     uint i:
     int j;
     unsigned short byte, crc, mask;
     i = 0:
     crc = 0xFFFF;
     while (i < nBytes)
           byte = message[i]; // Get next byte.
           crc = crc ^ byte;
           for (j = 7; j >= 0; j--)
           {
                 mask = -(crc & 1);
                 crc = (crc >> 1) ^ (0xA001 & mask);
           }
           i = i + 1;
     }
     return ~crc;
```

The CRC algorithm is applied to the entire command or response, except for the CRC field itself.

11.2 ISP_HUNT_CONNECT_CLASSIC COMMAND

}

The ISP_HUNT_CONNECT_CLASSIC command attempts to establish a connection with the target system. This is the only command format which does not include a Size or CRC field. The command encoding has alternating 0 and 1 states, to assist UART baud rate determination. The host sends this command until an ISP ACK CLASSIC response is received.

Field	Bytes	Value
Host Commands	1	55h

11.3 ISP_HUNT_CONNECT COMMAND

The ISP_HUNT_CONNECT command establishes a connection with the target system after the host interface (USB or one of the UART ports) has been determined. No baud rate determination is performed. An ISP ACK response is expected from the bootloader after this command is sent.

Field	Bytes	Value
Host Command	1	48h
Size	2	0005h
CRC	2	790Dh

11.4 ISP_GET_VERSION COMMAND

The ISP_GET_VERSION command requests a data structure that describes the version of bootloader software. A special ISP_ACK response which includes the data structure is expected from the bootloader after this command is sent.

Field	Bytes	Value
Host Command	1	56h
Size	2	0005h
CRC	2	7F6Dh

11.5 ISP_WRITE COMMAND

The ISP_WRITE command writes a specified number of bytes to the on-chip RAM. An ISP_ACK response is expected from the bootloader after this command is sent.

Field	Bytes	Value
Host Command	1	57h
Size	2	nBytes + Ch
Mem Type	1	2h
nBytes	2	
Address	4	
DataBuffer	nBytes	
CRC	2	790Dh

MemType	 The Memory Type field specifies the destination memory. The bootloader will respond with an error for any selection except RAM (2h). Oh – On-chip flash program memory. 1h – On-chip flash data memory. 2h – On-chip RAM. 3h – External CFI-compliant flash memory. 4h – On-chip flash information block 0. 5h – On-chip flash information block 1. 6h – On-chip flash information block 2.
nBytes	Number of bytes to write.
Address	Starting address of destination memory.
DataBuffer	Write data.

11.6 ISP_GO COMMAND

The ISP_GO command jumps to address 0, which is the beginning of the on-chip RAM. No response is expected from the bootloader after this command is sent.

Field	Bytes	Value
Host Command	1	47h
Size	2	0005h
CRC	2	790Dh

www.ti.com

11.7 ISP_ACK_CLASSIC RESPONSE

The ISP_ACK_CLASSIC response acknowledges successful reception of an ISP_HUNT_CONNECT_CLASSIC command. This is the only response format which does not include a Size or CRC field.

Field	Bytes	Value
Acknowledge	1	32h

11.8 ISP_ACK RESPONSE

The ISP_ACK response acknowledges reception of any command except the ISP_HUNT_CONNECT_CLASSIC command (which is acknowledged with the ISP_ACK_CLASSIC response) or the ISP_GO command (which is not acknowledged by the bootloader). The standard ISP_ACK response has this format:

Field	Bytes	Value
Acknowledge	1	06h
Size	2	0005h
CRC	2	6E6Dh

The ISP_ACK response to the ISP_GET_VERSION command has this format:

	Field	Bytes	Value
	Acknowledge	1	06h
	Size	2	055h
	VersionCode	4	
	VersionString	12	
	Description	64	
	CRC		
VersionCode	Four-byte version code. Upper two bytes are a type code, which is 00h for the bootloader or 01h for a full ISP implementation. Lower two bytes are a 16-bit version number.		
VersionString	ASCII representation of the version code.		
Description	ASCII text description of the version.		

11.9 ISP_NACK RESPONSE

The ISP_NACK response indicates that an ISP_HUNT_CONNECT or ISP_WRITE command failed.

Table 11-3.

Field	Bytes	Value
Acknowledge	1	15h
Size	2	0006h
ErrorCode	1	
CRC	2	6E6Dh

11.10 HOST INTERFACE TO BOOTLOADER

Following power-on of the target system, the host sends ISP_HUNT_CONNECT_CLASSIC commands until an ISP_ACK_CLASSIC response is returned. Then, the host must wait for 10 ms and send another ISP_HUNT_CONNECT_CLASSIC command. If an ISP_ACK_CLASSIC response is received for that command, the host may proceed with any other commands.

11.10.1 Bootloader Start-Up Timing

After the bootloader begins execution, these factors affect the time required before commands can be accepted:

- Low-Speed Oscillator Start-Up Time—the bootloader waits for the low-frequency oscillator to stabilize. If it does not stabilize, the bootloader assumes no 32.768 kHz clock source is available and generates Slow Clock through the prescaler from Main Clock. It also assumes the Main Clock frequency is 12 MHz. The low-frequency oscillator stabilization time is typically less than 500 ms.
- *Main Clock Frequency Determination*—if a 32.768 kHz clock source is available, it is used to determine the frequency of Main Clock. Although the Main Clock frequency is nominally 12 MHz, the bootloader can use a Main Clock operating at 3, 3.25, 4, 6, 6.5, 8, 12, 13, or 16 MHz. Main Clock frequency determination takes about 65 ms.
- *Host Interface Determination*—if USB enumeration occurs before a ISP_HUNT_CONNECT_CLASSIC command is received, the USB interface is selected as the host interface. While USB enumeration has not occurred, the bootloader checks each UART port for activity.
- Host Baud Rate Determination—for each UART port, the bootloader checks whether the RXD input has changed state since it was last sampled. If the state changed, the bootloader attempts to measure the pulse width of six successive states on that RXD input to determine the baud rate. If six state changes are not detected within 100 ms, the bootloader resumes hunting among the other UART ports. However, if six state changes occur and the baud rate has been determined, the bootloader waits for an ISP_HUNT_CONNECT_CLASSIC command. If the command is not received within 1 second, the bootloader resumes hunting among the UART ports. The bootloader will not make more than three attempts to determine baud rate or receive a command on any particular UART port.

Bootloader start-up time can be improved by ensuring that no transitions can occur on unused UART RXD inputs.

www.ti.com

11.11 ERE16 APPLICATIONS

An application which boots up in ERE16 mode can call the bootloader by jumping to FE 0000h.

The SWRESET(ISP) event invoked through the SWRESET register (see) is intended to support softwareinitiated reset to the bootloader, however this is not enforced by hardware. To handle SWRESET(ISP) events in this way, the application must check the ISPRST bit in the MSTAT register. If this bit is set, an SWRESET(ISP) event occurred, and the application may jump to FE 0000h to pass control to the bootloader.

The bootloader does not distinguish between start-up from a hardware reset and an SWRESET(ISP) event, so it will perform the same clock configuration and host interface determination procedures in either case.

If an application boots up in ERE16 mode and makes an unsuccessful attempt to reprogram the application software, it might not be possible to reboot into ERE16 mode. In this case, the system can be forced to execute the bootloader by pulling the ENV0 and ENV1 pins low during reset.

11.12 DEFAULT STATES

When application software is executed by issuing an ISP_GO command, it can assume the following default states have been configured by the bootloader:

- PLL1 Clock Frequency—60 MHz
- HCLK Clock Frequency—60 MHz
- PCLK Clock Frequency—30 MHz
- Auxiliary Clock 6 Frequency—60 MHz
- Interrupts—Disabled

12 CPU DMA CONTROLLER

The CPU DMA controller (DMAC) can be used to accelerate peripheral-to-memory, memory-to-peripheral, and memory- to-memory block transfers. Because it uses cycle stealing to interleave bus cycles with the CPU, DMA-based data movement uses the available bandwidth on the CPU core bus more efficiently than software-based data movement.

The DMAC provides 16 DMA channels, which may be assigned to any of 35 peripheral registers. For registers that are loaded by the peripheral (such as a UART receive register), the DMAC gets a DMA request when the register is loaded. It then reads the register and writes the data to memory. For registers that are unloaded by the peripheral (such as a UART transmit register), the DMAC gets a DMA request when the register is empty. It then reads data from memory and writes the data to the register. Only one register at a time may be enabled to use a DMA channel. Any channel which is not enabled for peripheral DMA may be used for software DMA (memory-to-memory block transfers).

The DMAC has a register-based programming interface (as opposed to I/O control blocks). After loading the registers with source and destination addresses, as well as block size and type of operation, a DMAC channel is ready to respond to DMA transfer requests. A request can only come from on- chip peripherals or software, not external peripherals. On receiving a DMA transfer request, if the channel is enabled, the DMAC performs the following operations:

- 1. Arbitrates to become master of the CPU core bus.
- 2. Determines priority among the DMAC requests. Priority is linear, with channel 0 having the highest priority.
- 3. Executes data transfer bus cycle(s) specified by the programming of the control registers for the channel being serviced. This may be a single cycle or a four-cycle burst.
- If the DMA transfer cycle is complete, the DMAC does the following: Updates the termination bits. Asserts an interrupt (if enabled).
- 5. Returns control of the CPU core bus to the CPU, even if a DMA request continues to be asserted. Priority among DMA channels is re-determined after every cycle.

All DMA transfers are indirect mode, in which the data is read from the source into a DMAC buffer register, then written from the buffer register to the destination.

Each DMAC channel has ten 32-bit control and status registers. DMAC registers are named with the suffix n, in which n is 0 to 15, representing the channel number.

If all of the channels are disabled (DMACNTn.CHEN = 0), the clock to the DMA module is disabled to reduce power consumption.

CP3CN37

www.ti.com

12.1 DMA-CAPABLE PERIPHERALS

Table 12-1 shows the DMA-capable peripherals, which may be assigned to any of the 16 DMA channels by programming the SRCRQ field of the DMACNTn registers. The SRCRQ field only selects the source of the DMA request signal and the receiver for the DMA acknowledge signal. It is still necessary to set up the address of the peripheral, the transfer direction, and other DMA channel control settings.

SRCRQ	Peripheral	Transaction	Register
0	UART3	R	RXBUF3
1	UART3	W	TXBUF3
2	CVSD/PCM0	R	PCMOUT0
3	CVSD/PCM0	W	PCMIN0
4	CVSD/PCM1	R	PCMOUT1
5	CVSD/PCM1	W	PCMIN1
6	AAI Slot 0	R	ARDR0
7	AAI Slot 0	W	ATDR0
8	AAI Slot 1	R	ARDR1
9	AAI Slot 1	W	ATDR1
10	Codec ADC1	R	TCDCADC1
11	Codec ADC2	R	TCDCADC2
12	Codec DAC Left	W	TCDCLEFT
13	Codec DAC Right	W	TCDCRIGHT
14	I ² S Left	R	I ² SRXDATL
15	I ² S Right	R	I2SRXDATR
16	I ² S Left	W	I2STXDATL
17	I ² S Right	W	I2STXDATR
18 - 20		Reserved	
21	USART0	R	RXBUF0
22	USART0	W	TXBUF0
23	USART1	R	RXBUF1
24	USART1	W	TXBUF1
25	UART2	R	RXBUF2
26	UART2	W	TXBUF2
27	CVSD/PCM0	R	CVSDOUT0
28	CVSD/PCM0	W	CVSDIN0
29	CVSD/PCM1	R	CVSDOUT1
30	CVSD/PCM1	W	CVSDIN1
31	AAI Slot 2	R	ARDR2
32	AAI Slot 2	W	ATDR2
33	MWSPI	R	MWDAT
34	MWSPI	W	MWDAT
35	ACCESS.bus	R/W	ACBSDA
36	USB Tx Endpoint 1	W	EP1FIFO
37	USB Tx Endpoint 2	W	EP2FIFO
38	USB Tx Endpoint 3	W	EP3FIFO
39	USB Rx Endpoint 1	R	EP1FIFO
40	USB Rx Endpoint 2	R	EP2FIFO
41	USB Rx Endpoint 3	R	EP3FIFO

Table 12-1. DMA-Capable Peripherals

INSTRUMENTS

www.ti.com

12.2 TRANSFER TYPES

The DMAC supports three transfer types:

- Single Transfers—A single read cycle followed by a single write cycle.
- Burst Transfers—A four-cycle burst read from memory followed by a four-cycle burst write to memory. Software DMA requests (memory-to-memory block transfers) are always burst transfers.
- Data Collection Transfers—A four-cycle burst read from memory followed by four single-cycle writes to a peripheral, or four single-cycle reads from a peripheral followed by a four-cycle burst write to memory.

Priority among DMA requests is linear for transfers of the same type (channel 0 has highest priority), however burst transfers and data collection transfers have priority over single transfers.

During a single transfer, the transfer cycle size (number of bytes per cycle) is controlled by the WMODE and TCS bits of the DMACNTn register, as shown in Table 12-2. During a burst, the transfer cycle size is always 4 bytes.

Transfer Cycle Size	WMODE	TCS
1 Byte	0	0
2 Bytes	0	1
4 Bytes	1	Х

Table 12-2. Transfer Cycle Size

The transfer type is selected by the SWRQ and BBE bits in the DMACNTn register, as shown in Table 12-3. Only channels 0 and 1 support data collection mode.

Table 12-3. D	OMA Transfe	r Types
---------------	-------------	---------

Transfer Type	SWRQ	BBE
Single Cycle	0	0
Data Collection	0	1
Burst	1	Х

12.2.1 DMA Buffer Flush

When data collection mode has been used to read data from a peripheral, the number of bytes received from the peripheral might not correspond to an integral number of bursts. To flush data remaining in the buffer, perform the following steps:

- 1. Disable the peripheral DMA request. Do not clear the DMA channel enable bit (the CHEN bit in the DMACNTn register), because clearing this bit will clear the buffer.
- 2. Read the BNE bit and the BLV field in the DMASTATn register. The BNE bit indicates whether there is valid data in the buffer. The BLV field indicates the number of valid bytes in the buffer.
- 3. Clear the BBE bit in the DMACNTn register. This enables a burst write to memory, even though the buffer is not full. Invalid entries in the buffer are written to memory with undefined data.

A buffer flush will only occur when the DIR bit in the DMACNTn register is clear, and the buffer is not empty (the BNE bit in the DMASTATn register is set). If the DIR bit is set, the data in the buffer is discarded.

www.ti.com

12.3 TRANSFER MODES

A DMAC channel may be used in one of three different transfer modes:

- *Single Buffer*—The transfer performed for the channel is specified by the states sampled from the control registers when the last DMA request was enabled.
- *Double Buffer*—The transfer performed for the channel is specified by the states sampled from the control registers when the last DMA request was enabled. A new set of states is loaded into the control registers to specify the next transfer to be performed for the channel.
- *Auto-initialize*—The transfer performed for the channel is specified in its control registers, and the operation is repeated as long as the channel is enabled.

The OT bit in the DMACNTn register is clear for single buffer and double buffer mode. The OT bit is set to enable auto-initialize mode.

Double buffer mode is obtained by reloading the DMAC channel control registers after a DMA request has been enabled. A DMA request is enabled by loading the DMACNTn register with a set CHEN bit. After enabling a DMA request, the DMA control registers may be loaded with new states. The BLTRn register must be written last, because loading this register sets the VLD bit in the DMASTATn register, which indicates that new values have been loaded into the control registers.

When the PF bit in the DMACNTn register is clear, the DMAC is the flow controller for the transfer. When the PF bit is set, the peripheral is the flow controller. In double buffer mode with the peripheral as the flow controller, the BLTRn register must be written so that the VLD bit becomes set, even though the value in the BLTRn register is not used.

12.3.1 Single Buffer Mode

This mode provides the simplest way to accomplish a single data transfer.

Initialization

- 1. Select the peripheral device by writing the SRCRQ field in the DMACNTn register.
- 2. Write the block transfer addresses and byte count into the corresponding ADCAn, ADCBn, and BLTCn counters.
- 3. Clear the DMACNTn.OT bit to select non-auto-initialize mode. Clear the DMASTAT.VLD bit by writing a 1 to it.
- 4. Set the DMACNTn.CHEN bit to activate the channel and enable it to respond to DMA transfer requests. If the DMACNTn register is loaded for any other reason, the DMACNTn.CHEN bit must be clear to avoid prematurely starting a new DMA transfer.

Termination

When the DMAC is the flow controller, the transfer terminates when the transfer count in the BLTCn register reaches zero. When the peripheral is the flow controller, the peripheral signals the end of transfer. On termination:

- 1. The DMASTAT.TC and DMASTAT.OVR bits are set, and the DMASTAT.CHAC bit is cleared
- 2. An interrupt is asserted if enabled by the DMACNTn.ETC or DMACNTn.EOVR bits.

12.3.2 Double Buffer Mode

This mode allows software to set up the next DMA transfer while the current transfer proceeds.

Initialization

- 1. Select the peripheral device by writing the SRCRQ field in the DMACNTn register.
- 2. Write the block transfer addresses and byte count into the ADCAn, ADCBn, and BLTCn counters.
- 3. Clear the DMACNTn.OT bit to select non-auto-initialize mode. Clear the DMASTAT.VLD bit by writing a 1 to it.
- 4. Set the DMACNTn.CHEN bit. This activates the channel and enables it to respond to DMA transfer requests. If the DMACNTn register is loaded for any other reason, the DMACNTn.CHEN bit must be clear to avoid prematurely starting a new DMA transfer.
- 5. While the current block transfer proceeds, write the addresses and byte count for the next block into the ADRAn, ADRBn, and BLTRn registers. The BLTRn register must be written last, because writing this register sets the DMASTAT.VLD bit which indicates to the DMAC that the parameters for the next transfer have been updated.

Continuation/Termination

When the BLTCn counter reaches 0 (DMACNTn.PF = 0) or the last request has been processed (DMACNTn.PF = 1):

- 1. If the DMACNTn.PF bit is clear, the DMASTATn.TC bit is set.
- 2. If enabled by the DMACNTn.ETC bit, an interrupt is asserted.
- 3. The DMAC channel checks the DMASTAT.VLD bit.

If the DMASTAT.VLD bit is set:

- 1. The channel copies the ADRAn, ADRBn, and BLTRn values into the ADCAn, ADCBn, and BLTCn registers.
- 2. The DMASTAT.VLD bit is cleared.
- 3. The next block transfer is started.

The transfer operation terminates.

- 1. The DMASTAT.TC bit is set.
- 2. The channel sets the DMASTAT.OVR bit.
- 3. The DMASTAT.CHAC bit is cleared.
- 4. If enabled by the DMACNTn.EOVR bit, an interrupt is asserted.

12.3.3 Auto-Initiate Mode

This mode causes the DMA channel to repeat the same operation continuously without software intervention. The operation is repeated until the channel is disabled.

Initialization

- 1. Select the peripheral device by writing the SRCRQ field in the DMACNTn register.
- 2. Write the block addresses and byte count into the ADCAn, ADCBn, and BLTCn counters, as well as the ADRAn, ADRBn, and BLTRn registers.
- 3. Set the DMACNTn.OT bit to select auto-initialize mode.
- 4. Set the DMACNTn.CHEN bit to activate the channel and enable it to respond to DMA transfer requests. If the DMACNTn register is loaded for any other reason, the DMACNTn.CHEN bit must be clear to avoid prematurely starting a new DMA transfer.

Continuation

When the BLTCn counter reaches 0 (DMACNTn.PF = 0) or the last request has been processed (DMACNTn.PF = 1):

- 1. The contents of the ADRAn, ADRBn, and BLTRn registers are copied to the ADCAn, ADCBn, and BLTCThe DMAC channel checks the value of the DMASTAT.TC bit.n counters.
- 2. The DMAC channel checks the value of the DMASTAT.TC bit.

If the DMASTAT.TC bit is set and the DMACNTn.PF bit is clear:

- 1. The DMASTAT.OVR bit is set.
- 2. If enabled by the DMACNTn.EOVR bit, an interrupt is asserted.
- 3. The DMAC operation is repeated.

If the DMASTAT.TC and DMACNTn.PF bits are clear:

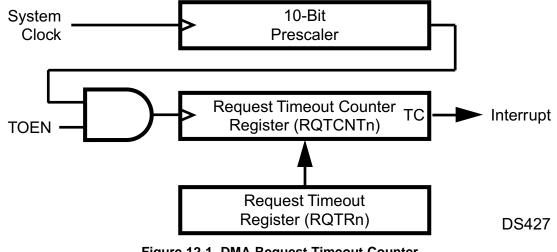
- 1. The DMASTAT.TC bit is set.
- 2. If enabled by the DMACNTn.ETC bit, an interrupt is asserted.
- 3. The DMAC operation is repeated.

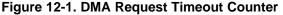
Termination

The DMA transfer is terminated when the DMACNTn.CHEN bit is cleared.

12.4 SOFTWARE DMA REQUEST

In addition to the hardware requests from peripherals, a DMA transfer request can also be initiated by software. A software DMA transfer request is used for memory-to-memory block transfers.


When the DMACNTn.SWRQ bit is set, the corresponding DMA channel receives a software DMA request. When the DMACNTn.SWRQ bit is clear, the software DMA request for the channel is inactive.


A software DMA request may only be asserted when the associated peripheral DMA request is disabled and the channel is inactive. Software can poll the DMASTAT.CHAC bit to determine whether the channel is currently active.

When the DMACNTn.DIR bit is 0, the first bus cycle reads data from the source using the ADCAn counter, while the second bus cycle writes the data into the destination using the ADCBn counter. When the DMACNTn.DIR bit is set, the first bus cycle reads data from the source using the ADCBn counter, while the second bus cycle writes the data into the destination addressed by the ADCAn counter.

12.5 DMA REQUEST TIMEOUT

Each DMA channel may assert a timeout interrupt if too much time occurs between DMA requests. A 10bit prescaler divides the HCLK Clock by 1024 to provide a timebase for a timeout counter, as shown in Figure 12-1.

Texas Instruments

www.ti.com

Software loads a timeout interval in the RQTRn register. When a DMA request is received, the RQTCNTn register is loaded with the contents of the RQTRn register. If the TOEN bit is set, the RQTCNTn register decrements on every clock received from the prescaler. When the RQTCNTn register reaches its terminal count, an interrupt is asserted.

Once the timeout interrupt is enabled and a DMA request is received, the timeout interrupt will occur unless: the next DMA request is received before the end of the timeout interval, or the TOEN bit is cleared.

12.6 ERROR RESPONSE

When an error occurs, the DMASTATn.ERR bit is set, and the DMASTATn.CHAC bit is cleared. The current transfer cycle is completed or terminated, and the channel cannot be used again until the ERR bit is cleared (by writing 1 to it). An error may occur because the address was invalid or an incremental access goes out of bounds.

12.7 FREEZE MODE

When the Freeze mode is entered, all DMA operations are stopped. Pending operations are stopped after completion of the current transfer. They will start again when the Freeze mode is exited. This allows breakpoints to be used in debug systems.

12.8 REGISTER PROGRAMMING

The DMAC only handles address-aligned transfers. The addresses loaded into ADCAn, ADRAn, ADCBn, and ADRBn must be multiples of the transfer cycle size. Do not write the counter registers ADCAn, ADCBn, or BLTCn while the channel is active (DMASTAT.CHAC = 1). When a channel is activated for DMAC flow control, the BLTCn and BLTRn registers must hold values greater than 0.

12.9 DMA CONTROLLER REGISTER SET

There are 16 identical sets of 10 DMA controller registers, as listed in Section 25.5.

Name	Address	Description	
ADCA0	FF 0400h	Device A Address Counter Register	
ADRA0	FF 0404h	Device A Address Register	
ADCB0	FF 0408h	Device B Address Counter Register	
ADRB0	FF 040Ch	Device B Address Register	
BLTC0	FF 0410h	Block Length Counter Register	
BLTR0	FF 0414h	Block Length Register	
RQTR0	FF 0418h	Request Timeout Register	
RQTCNT0	FF 041Ch	Request Timeout Counter Register	
DMACNT0	FF 0420h	DMA Control Register	
DMASTAT0	FF 0424h	DMA Status Register	
ADCA1	FF 0440h	Device A Address Counter Register	
ADRA1	FF 0444h	Device A Address Register	
ADCB1	FF 0448h	Device B Address Counter Register	
ADRB1	FF 044Ch	Device B Address Register	
BLTC1	FF 0450h	Block Length Counter Register	
BLTR1	FF 0454h	Block Length Register	
RQTR1	FF 0458h	Request Timeout Register	
RQTCNT1	FF 045Ch	Request Timeout Counter Register	
DMACNT1	FF 0460h	DMA Control Register	
DMASTAT1	FF 0464h	DMA Status Register	

Table 12-4. DMA Controller Registers

Texas Instruments

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com	
------------	--

Table 12-4.	DMA	Controller	Registers	(continued)
		•••••••		(

ADCA2 FF 0480h Device A Address Register ADCB2 FF 0480h Device B Address Register ADCB2 FF 0480h Device B Address Register BLTC2 FF 0480h Block Length Counter Register BLTR2 FF 0490h Block Length Register RQTR2 FF 0490h Block Length Register RQTR2 FF 0490h Rock Length Register RQTR2 FF 0490h Rock Length Counter Register DMACNT2 FF 0400h DMA Control Register DMASTA72 FF 0400h Device A Address Register ADCA3 FF 0400h Device A Address Counter Register ADCA3 FF 0400h Device A Address Register ADCA3 FF 0400h Biock Length Register ADCB3 FF 0400h Biock Length Register ADCB3 FF 0400h Biock Length Register BLTC3 FF 0400h Biock Length Register RQTR3 FF 0400h Biock Length Register RQTR3 FF 0400h Biock Length Register RQTR3 FF 0400h Request Timeout Register BLTC3 FF 0400h Request Timeout Counter Register BLTC3 FF 0400h Request Timeout Counter Register RQTR3 FF 0400h Re		Table 12-4. DIVIA CON	itroller Registers (continued)
ADCB2 FF 0480h Device B Address Counter Register ADRB2 FF 0480h Bick Langth Counter Register BLTC2 FF 0490h Bick Langth Counter Register RQTR2 FF 0496h Request Timeou Counter Register RQTCN12 FF 0496h Request Timeou Counter Register DMASTAT2 FF 0400h DMA Status Register ADCA3 FF 04C0h Device A Address Counter Register ADCA3 FF 04C0h Device A Address Counter Register ADCA3 FF 04C0h Device A Address Counter Register ADCB3 FF 04C0h Device A Address Counter Register ADRB3 FF 04C0h Device B Address Counter Register ADRB3 FF 04C0h Device B Address Register BLTC3 FF 04C0h Bick Length Register BLTC3 FF 04D0h Bick Length Register RQTR3 FF 04D0h Bick Length Register RQTR3 FF 04D0h Recuest Timeout Register DMACNT3 FF 04D0h Recuest Timeout Register DMACNT3 FF 04E0h DMA Control Register DMACA FF 0500h Device A Address Counter Register ADR4 FF 0500h Device A Address Counter Register ADR4 FF 0500h Device A Address Register </th <th>ADCA2</th> <th>FF 0480h</th> <th>Device A Address Counter Register</th>	ADCA2	FF 0480h	Device A Address Counter Register
ADRB2 FF 048Ch Device B Address Register BLTC2 FF 049Ch Block Length Center Register BLTR2 FF 049Sh Rock Length Register RQTR2 FF 049Sh Request Timeout Register DMACNT2 FF 0440h DMA Control Register DMACNT2 FF 04A0h DMA Control Register DMACNT2 FF 04A0h DMA Control Register ADRA3 FF 04C0h Device A Address Counter Register ADRB3 FF 04C0h Device B Address Register ADRB3 FF 04C0h Device B Address Register BLTC3 FF 04D0h Block Length Counter Register BLTR3 FF 04D0h Block Length Counter Register RQTR13 FF 04D0h Block Length Register DMACNT3 FF 04E0h DMA Control Register DMACNT3 FF 04E0h DMA Control Register ADRA4 FF 0500h Device A Address Register ADRA4 FF 0500h Device A Address Counter Register ADRA4 FF 0500h Device A Address Register ADRA4 <td< td=""><td>ADRA2</td><td>FF 0484h</td><td>Device A Address Register</td></td<>	ADRA2	FF 0484h	Device A Address Register
BLTC2 FF 0490h Block Length Counter Register BLTR2 FF 0490h Block Length Register ROTK2 FF 0490h Request Timeout Register ROTCN12 FF 0440h DMA Status Register DMASTA12 FF 0440h DMA Status Register ADCA3 FF 04C0h Device A Address Counter Register ADCB3 FF 04C0h Device A Address Register ADCB3 FF 04C0h Device B Address Register ADRB3 FF 04C0h Device B Address Register BLTC3 FF 04D0h Block Length Register BLTC3 FF 04D0h Block Length Register ROTK3 FF 04D0h Request Timeout Register DMACNT3 FF 04D0h Request Timeout Counter Register DMACNT3 FF 04D0h DMA Control Register DMACNT3 FF 04D0h DMA Control Register DMACNT3 FF 04D0h DMA Control Register ADCA4 FF 0500h Device A Address Counter Register ADCA4 FF 0500h Device A Address Register ADCA4 FF	ADCB2	FF 0488h	Device B Address Counter Register
BLTR2 FF 0494h Block Length Register RQTR2 FF 0496h Request Timeout Register DMACNT2 FF 0496h Request Timeout Counter Register DMACNT2 FF 0404h DMA Control Register DMACNT2 FF 0404h DMA Status Register ADCA3 FF 0404h Device A Address Register ADCB3 FF 0404h Device A Address Register ADCB3 FF 0406h Device A Address Register ADCB3 FF 0406h Device A Address Register BLTG3 FF 0406h Block Length Register BLTR3 FF 0406h Request Timeout Register ROTR3 FF 0406h Request Timeout Register DMACN13 FF 0406h Request Timeout Register DMACN13 FF 0406h DMA Status Register DMACN13 FF 0406h Device A Address Counter Register DMACN13 FF 0406h Device A Address Register ADCA4 FF 0506h Device A Address Counter Register ADR4 FF 0506h Device A Address Register ADCA4	ADRB2	FF 048Ch	Device B Address Register
RQTR2 FF 0480h Request Timeout Register RQTCNT2 FF 0440h DMA Control Register DMACNT2 FF 0440h DMA Status Register ADCA3 FF 0440h Device A Address Register ADRA3 FF 04C4h Device A Address Register ADRB3 FF 04C4h Device A Address Register ADRB3 FF 04C4h Device B Address Register ADRB3 FF 04C4h Device B Address Register BLTC3 FF 04D0h Block Length Register BLTC3 FF 04D0h Block Length Register RQTR3 FF 04D0h Block Length Register RQTR3 FF 04D0h Request Timeout Counter Register DMACNT3 FF 04D0h Request Timeout Counter Register DMACNT3 FF 04D0h DMA Control Register DMACNT3 FF 04D0h Device A Address Register ADCA4 FF 0500h Device A Address Register BLT64 FF 0500h Device A Address Register BLT64 FF 0500h <t< td=""><td>BLTC2</td><td>FF 0490h</td><td>Block Length Counter Register</td></t<>	BLTC2	FF 0490h	Block Length Counter Register
RQTCNT2 FF 049Ch Request Timeout Counter Register DMACNT2 FF 04A4h DMA Control Register ADCA3 FF 04C4h Device A Address Register ADCA3 FF 04C6h Device A Address Counter Register ADCB3 FF 04C2h Device B Address Counter Register ADCB3 FF 04C2h Device B Address Register ADRB3 FF 04C2h Device B Address Counter Register BLTC3 FF 04D0h Block Length Register BLTR3 FF 04D0h Block Length Register RQTR3 FF 04D0h Block Length Register DMACNT3 FF 04D0h Block Length Register DMACNT3 FF 04E0h DMA Status Register DMACNT3 FF 04E0h DMA Status Register DMACAT3 FF 04E0h Device A Address Register DMACA4 FF 0500h Device A Address Register ADCA4 FF 0500h Device A Address Register ADCB4 FF 0500h Device A Address Register ADCA4 FF 051h Request Timeout Counter Register BLTC4 <td>BLTR2</td> <td>FF 0494h</td> <td>Block Length Register</td>	BLTR2	FF 0494h	Block Length Register
DMACNT2 FF 04A0h DMA Control Register DMASTAT2 FF 04C0h Device A Address Counter Register ADCA3 FF 04C0h Device A Address Counter Register ADCB3 FF 04C0h Device B Address Counter Register ADCB3 FF 04C0h Device B Address Register ADRB3 FF 04C0h Biock Length Counter Register BLTC3 FF 04D0h Biock Length Counter Register RQTR3 FF 04D8h Request Timeout Register RQTR3 FF 04D0h Rock Length Counter Register DMACNT3 FF 04E0h DMA Control Register DMACNT3 FF 04E0h DMA Control Register DMASTAT3 FF 04E0h Device A Address Counter Register ADCA4 FF 0500h Device B Address Register ADCA4 FF 0500h Device B Address Register ADCB4 FF 0510h Block Length Counter Register BLTC4 FF 0510h Block Length Register BLTC4 FF 0510h Block Length Register BLTC4 FF 0520h DMA Control Register	RQTR2	FF 0498h	Request Timeout Register
DMASTAT2 FF 04A4h DMA Status Register ADCA3 FF 04C4h Device A Address Counter Register ADCB3 FF 04C4h Device B Address Register ADCB3 FF 04C4h Device B Address Register ADRB3 FF 04C2h Device B Address Register BLTC3 FF 04D0h Block Length Counter Register BLTR3 FF 04D0h Block Length Register RQTR3 FF 04D0h Request Timeout Register RQTR3 FF 04D0h Request Timeout Register DMACNT3 FF 04D0h Request Timeout Counter Register DMACNT3 FF 04E0h DMA Status Register DMACNT3 FF 04E0h DMA Status Register ADCA4 FF 050h Device A Address Register ADRA4 FF 050h Device A Address Register ADCB4 FF 050h Device B Address Register BLTC4 FF 051h Request Timeout Counter Register BLTC4 FF 051h Request Timeout Register RQTCNT4 FF 052h DMA Counter Register DMACNT4 <td< td=""><td>RQTCNT2</td><td>FF 049Ch</td><td>Request Timeout Counter Register</td></td<>	RQTCNT2	FF 049Ch	Request Timeout Counter Register
ADCA3 FF 04C0h Device A Address Register ADRA3 FF 04C3h Device A Address Register ADCB3 FF 04C3h Device B Address Register ADRB3 FF 04CAh Device B Address Register BLTC3 FF 04D0h Block Length Counter Register BLTR3 FF 04D4h Block Length Register RQTR3 FF 04D6h Request Timeout Register RQTR3 FF 04D6h Request Timeout Register DMACNT3 FF 04E4h DMA Status Register DMACNT3 FF 04E6h DMA Status Register ADCA4 FF 0500h Device A Address Register ADCA4 FF 0500h Device A Address Register ADCA4 FF 0500h Device B Address Register ADCA4 FF 0500h Device B Address Register ADCB4 FF 0500h Device B Address Register ADCA4 FF 0500h Device B Address Register ADCB4 FF 0500h Device B Address Register BLTC4 FF 051h Block Length Register RQTR4 FF 051h	DMACNT2	FF 04A0h	DMA Control Register
ADRA3 FF 04C4h Device A Address Register ADCB3 FF 04C2h Device B Address Counter Register ADR33 FF 04CCh Device B Address Register BLTC3 FF 04D0h Block Length Counter Register BLTR3 FF 04D0h Block Length Register RCTCNT3 FF 04D0h Request Timeout Counter Register DMACNT3 FF 04DCh Request Timeout Counter Register DMACNT3 FF 04E0h DMA Control Register DMACNT3 FF 0450h Device A Address Register ADCA4 FF 0500h Device A Address Register ADCA4 FF 0500h Device A Address Register ADCB4 FF 0500h Device A Address Register ADCB4 FF 0500h Device A Address Register ADCB4 FF 0500h Device A Address Register BLTC4 FF 051h Bequest Timeout Counter Register BLTC4 FF 051h Block Length Register RQTR4 FF 051h Request Timeout Counter Register RQTR4 FF 052h DMA Control Register RQTR4 FF 051ch Request Timeout Counter Register RQTR4 FF 052h DMA Control Register RQTR4 FF 052h DMA Control Register RQTR4	DMASTAT2	FF 04A4h	DMA Status Register
ADCB3 FF 04C8h Device B Address Counter Register ADRB3 FF 04CCh Device B Address Register BLTC3 FF 04D0h Block Length Counter Register BLTR3 FF 04D8h Request Timeout Register RQTR3 FF 04D0h Request Timeout Counter Register RQTCNT3 FF 04D0h Request Timeout Counter Register DMACNT3 FF 04E0h DMA Control Register DMASTAT3 FF 04E0h DMA Control Register ADCA4 FF 0500h Device A Address Counter Register ADCA4 FF 0500h Device A Address Register ADCB4 FF 0500h Device B Address Counter Register ADRB4 FF 0500h Device B Address Counter Register BLTC4 FF 051h Block Length Register BLTR4 FF 0518h Request Timeout Register RQTCNT4 FF 052h DMA Control Register DMACNT4 FF 052h DMA Status Register DMACNT4 FF 052h DMA Status Register ADCB5 FF 054h Device A Address Counter Register	ADCA3	FF 04C0h	Device A Address Counter Register
ADRB3 FF 04CCh Device B Address Register BLTC3 FF 04D0h Block Length Counter Register BLTR3 FF 04D0h Block Length Register RQTR3 FF 04D6h Request Timeout Register RQTR3 FF 04D6h Request Timeout Register DMACNT3 FF 04E0h DMA Control Register DMASTAT3 FF 04E0h DMA Control Register ADCA4 FF 0500h Device A Address Counter Register ADCA4 FF 0500h Device A Address Counter Register ADCB4 FF 0500h Device B Address Counter Register ADCB4 FF 0508h Device B Address Register BLTC4 FF 0510h Block Length Register BLTC4 FF 0510h Block Length Register RQTR4 FF 0518h Request Timeout Register RQTR4 FF 0520h DMA Control Register DMASTAT4 FF 0520h DMA Control Register ADCA5 FF 0540h Device A Address Register ADCA5 FF 0540h Device A Address Register ADCA5 FF 0540h Device A Address Register ADCA5 <t< td=""><td>ADRA3</td><td>FF 04C4h</td><td>Device A Address Register</td></t<>	ADRA3	FF 04C4h	Device A Address Register
BLTC3 FF 04D0h Block Length Register BLTR3 FF 04D4h Block Length Register RQTR3 FF 04D8h Request Timeout Register RQTR3 FF 04D2h Request Timeout Register DMACNT3 FF 04E0h DMA Control Register DMASTAT3 FF 04E4h DMA Status Register ADCA4 FF 0500h Device A Address Register ADCA4 FF 0500h Device A Address Register ADCB4 FF 0500h Device B Address Register ADR84 FF 050Ch Device B Address Register BLTC4 FF 0510h Block Length Register BLTR4 FF 0518h Request Timeout Register RQTR4 FF 0520h DMA Control Register DMACNT4 FF 0520h DMA Status Register ADCA5 FF 0540h Device A Address Register ADCA5 FF 0540h Device	ADCB3	FF 04C8h	Device B Address Counter Register
BLTR3 FF 04D4h Block Length Register RQTR3 FF 04D8h Request Timeout Register RQTR3 FF 04D6h Request Timeout Register DMACNT3 FF 04E0h DMA Control Register DMASTAT3 FF 04E4h DMA Control Register ADCA4 FF 0500h Device A Address Counter Register ADCA4 FF 0500h Device A Address Counter Register ADC84 FF 0500h Device B Address Counter Register ADC84 FF 0500h Device B Address Counter Register BLTC4 FF 0510h Block Length Counter Register BLTC4 FF 0510h Block Length Counter Register RQTR4 FF 0510h Request Timeout Register RQTR4 FF 0520h DMA Control Register DMACNT4 FF 0520h DMA Control Register DMACNT4 FF 0520h DMA Control Register ADCA5 FF 0540h Device A Address Counter Register ADCA5 FF 0540h Device A Address Counter Register ADC55 FF 0540h Device A Address Counter Register ADCA5 FF 0540h Device A Address Counter Register ADCA5 FF 0540h Device A Address Counter Register ADCA5 FF 0550h Block Length Counter Register </td <td>ADRB3</td> <td>FF 04CCh</td> <td>Device B Address Register</td>	ADRB3	FF 04CCh	Device B Address Register
RQTR3FF 04D8hRequest Timeout RegisterRQTCNT3FF 04DChRequest Timeout Counter RegisterDMACNT3FF 04E0hDMA Control RegisterDMASTAT3FF 04E4hDMA Status RegisterADCA4FF 0500hDevice A Address Counter RegisterADCA4FF 0508hDevice A Address RegisterADCB4FF 0508hDevice B Address RegisterADCB4FF 0508hDevice B Address RegisterBLTC4FF 0506hDevice B Address RegisterBLTC4FF 0510hBlock Length Counter RegisterBLTA4FF 0516hRequest Timeout Counter RegisterRQTR44FF 0518hRequest Timeout Counter RegisterDMASTAT4FF 0520hDMA Control RegisterDMASTAT4FF 0520hDMA Control RegisterADCB5FF 0540hDevice A Address RegisterADCA5FF 0540hDevice A Address RegisterADCA5FF 0540hDevice A Address RegisterADCB5FF 0540hDevice B Address RegisterADCB5FF 0550hBlock Length RegisterADCB5FF 0550hBlock Length RegisterADCB5FF 0550hBlock Length RegisterBLTC5FF 0550hBlock Length RegisterRQTRN5FF 0550hBlock Length RegisterRQTR5FF 0550hBlock Length RegisterRQTR5FF 0550hBlock Length RegisterRQTR5FF 0550hBlock Length RegisterRQTR5FF 0550hDAA Control RegisterRQTR6FF 0580hDevice A Add	BLTC3	FF 04D0h	Block Length Counter Register
RQTCNT3FF 04DChRequest Timeout Counter RegisterDMACNT3FF 04E0hDMA Control RegisterDMASTAT3FF 04E4hDMA Status RegisterADCA4FF 0500hDevice A Address Counter RegisterADRA4FF 0500hDevice A Address RegisterADC84FF 0500hDevice A Address RegisterADC84FF 0500hDevice B Address RegisterADC84FF 0500hDevice B Address RegisterBLTC4FF 0510hBlock Length Counter RegisterBLTC4FF 0510hBlock Length RegisterRQTR4FF 0518hRequest Timeout RegisterRQTR4FF 0516hRequest Timeout RegisterDMACNT4FF 0520hDMA Control RegisterDMASTAT4FF 0520hDMA Control RegisterADCA5FF 0540hDevice A Address Counter RegisterADC85FF 0540hDevice A Address RegisterBLTC5FF 0550hBlock Length RegisterBLTC5FF 0550hBlock Length RegisterRQTR5FF 0550hRequest Timeout RegisterDMACNT5FF 0560hDMA Control RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address Counter RegisterADC86FF 0580hDevice A Address Counter RegisterADCA66FF 0580hDevice A Address Register<	BLTR3	FF 04D4h	Block Length Register
DMACNT3FF 04E0hDMA Control RegisterDMASTAT3FF 04E4hDMA Status RegisterADCA4FF 0500hDevice A Address Counter RegisterADCA4FF 0508hDevice A Address RegisterADCB4FF 0508hDevice A Address RegisterADCB4FF 0508hDevice B Address RegisterADRB4FF 0508hDevice B Address RegisterBLTC4FF 0510hBlock Length Counter RegisterBLTA4FF 0518hRequest Timeout RegisterROTR4FF 0518hRequest Timeout Counter RegisterROTR4FF 0518hRequest Timeout Counter RegisterDMACNT4FF 0520hDMA Control RegisterDMASTAT4FF 0524hDMA Status RegisterADCA5FF 0544hDevice A Address Counter RegisterADCA5FF 0544hDevice A Address Counter RegisterADCA5FF 0544hDevice A Address RegisterADCB5FF 0548hDevice B Address RegisterADCB5FF 0548hDevice B Address RegisterADCB5FF 0548hDevice B Address RegisterBLTC3FF 0558hRequest Timeout RegisterROTR5FF 0558hRequest Timeout RegisterROTR5FF 0558hRequest Timeout RegisterDMACNT5FF 0558hRequest Timeout RegisterADCA6FF 0589hDevice A Address Counter	RQTR3	FF 04D8h	Request Timeout Register
DMASTAT3FF 04E4hDMA Status RegisterADCA4FF 0500hDevice A Address Counter RegisterADCA4FF 0508hDevice A Address Counter RegisterADCB4FF 0508hDevice B Address RegisterADCB4FF 0508hDevice B Address RegisterBLTC4FF 0510hBlock Length Counter RegisterBLTC4FF 0510hBlock Length RegisterRCTR4FF 0518hRequest Timeout RegisterRQTCN14FF 0512hRequest Timeout RegisterDMACNT4FF 0524hDMA Status RegisterDMASTAT4FF 0524hDMA Status RegisterADCA5FF 054hDevice A Address Counter RegisterADCA5FF 054hDevice A Address Counter RegisterADCA5FF 054hDevice A Address RegisterADCA5FF 054hDevice A Address RegisterADCB5FF 0550hBlock Length Counter RegisterADCB5FF 0550hBlock Length Counter RegisterBLTC5FF 0550hBlock Length RegisterBLTC5FF 0550hBlock Length RegisterBLTS5FF 0550hBlock Length RegisterRQTR5FF 0550hBlock Length RegisterDMACNT5FF 0560hDMA Control RegisterDMACNT5FF 0580hCounter RegisterADCA6FF 0580hDevice A Address Counter Register	RQTCNT3	FF 04DCh	Request Timeout Counter Register
ADCA4FF 0500hDevice A Address Counter RegisterADRA4FF 0504hDevice A Address RegisterADCB4FF 0508hDevice B Address Counter RegisterADRB4FF 0500hDevice B Address RegisterBLTC4FF 0510hBlock Length Counter RegisterBLTA4FF 0518hRequest Timeout RegisterRQTR4FF 0518hRequest Timeout RegisterDMACNT4FF 0520hDMA Control RegisterDMACNT4FF 0524hDMA Control RegisterADCA5FF 0544hDevice A Address Counter RegisterADCA5FF 0540hDevice B Address Counter RegisterADCA5FF 0540hDevice B Address Counter RegisterADCB5FF 0540hDevice B Address Counter RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTS5FF 0550hBlock Length RegisterRQTR5FF 0550hBlock Length RegisterMACNT5FF 0550hDMA Control RegisterDMACNT5FF 0580hDMA Control RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address RegisterADCA6FF	DMACNT3	FF 04E0h	DMA Control Register
ADRA4FF 0504hDevice A Address RegisterADCB4FF 0508hDevice B Address Counter RegisterADR84FF 050ChDevice B Address RegisterBLTC4FF 0510hBlock Length Counter RegisterBLT74FF 0514hBlock Length RegisterRQTR4FF 0518hRequest Timeout RegisterDMACNT4FF 0518hRequest Timeout Counter RegisterDMACNT4FF 0520hDMA Control RegisterDMASTAT4FF 0520hDMA Control RegisterADRA5FF 0540hDevice A Address Counter RegisterADCA5FF 0540hDevice A Address Counter RegisterADCA5FF 0544hDevice B Address Counter RegisterADCB5FF 0544hDevice B Address Counter RegisterADCB5FF 0548hDevice B Address RegisterBLTC5FF 0550hBlock Length RegisterBLTR5FF 0550hBlock Length RegisterRQTR5FF 0550hBlock Length RegisterDMACNT5FF 0550hRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterDMACNT5FF 0560hDMA Status RegisterDMASTAT5FF 0560hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address RegisterADCA6FF 0580hDevice A Address RegisterADCA6FF 0580hDevice A Address RegisterADCA6FF 0580hDevice A Address Register <td>DMASTAT3</td> <td>FF 04E4h</td> <td>DMA Status Register</td>	DMASTAT3	FF 04E4h	DMA Status Register
ADCB4FF 0508hDevice B Address Counter RegisterADRB4FF 050ChDevice B Address RegisterBLTC4FF 0510hBlock Length Counter RegisterBLTR4FF 0514hBlock Length RegisterRQTR4FF 0518hRequest Timeout RegisterRQTCNT4FF 051ChRequest Timeout Counter RegisterDMACNT4FF 0520hDMA Control RegisterDMASTAT4FF 0524hDMA Status RegisterADCA5FF 0540hDevice A Address Counter RegisterADCA5FF 0544hDevice A Address RegisterADCB5FF 0548hDevice B Address RegisterBLTC5FF 0548hDevice B Address RegisterBLTC5FF 0550hBlock Length RegisterBLTC5FF 0550hBlock Length RegisterRQTR5FF 0556hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterDMACNT5FF 0558hRequest Timeout RegisterDMACNT5FF 0558hRequest Timeout RegisterDMACNT5FF 0558hRequest Timeout RegisterDMACNT5FF 0558hDevice A Address RegisterDMACNT5FF 0560hDMA Control RegisterADCA6FF 0580hDevice A Address RegisterADCA6FF 0580hDevice B Address RegisterADCA6FF 0580h <td>ADCA4</td> <td>FF 0500h</td> <td>Device A Address Counter Register</td>	ADCA4	FF 0500h	Device A Address Counter Register
ADRB4FF 050ChDevice B Address RegisterBLTC4FF 0510hBlock Length Counter RegisterBLTR4FF 0514hBlock Length RegisterRQTR4FF 0518hRequest Timeout RegisterRQTCN14FF 051ChRequest Timeout Counter RegisterDMACN14FF 0520hDMA Control RegisterDMASTAT4FF 0520hDMA Status RegisterADCA5FF 0540hDevice A Address Counter RegisterADCA5FF 0540hDevice A Address Counter RegisterADCA5FF 0540hDevice A Address Counter RegisterADCB5FF 0548hDevice B Address RegisterADCB5FF 0548hDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTC5FF 0550hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterRQTR5FF 0558hRequest Timeout RegisterDMACNT5FF 0558hRequest Timeout RegisterDMACNT5FF 0560hDMA Control RegisterDMASTAT5FF 0580hDevice A Address Counter RegisterDMACNT5FF 0580hDevice A Address Counter RegisterDMACNT5FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address RegisterADCA6FF 0580hDevice A Address RegisterADCA6FF 0580hDevice A Address RegisterADCA6FF 0580hDevice A Address RegisterADCA6FF 0580hDevice B Address Counter RegisterADCB6FF 0580hDevice B Addre	ADRA4	FF 0504h	Device A Address Register
BLTC4FF 0510hBlock Length Counter RegisterBLTR4FF 0514hBlock Length RegisterRQTR4FF 0518hRequest Timeout RegisterRQTCNT4FF 051ChRequest Timeout Counter RegisterDMACNT4FF 0520hDMA Control RegisterDMASTAT4FF 0524hDMA Status RegisterADCA5FF 0540hDevice A Address Counter RegisterADCA5FF 0540hDevice A Address RegisterADCB5FF 0548hDevice B Address Counter RegisterADCB5FF 0548hDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTC5FF 0550hBlock Length RegisterBLTS5FF 0550hBlock Length RegisterRQTR5FF 0550hBlock Length RegisterDMACNT5FF 0550hBlock Length RegisterDMACNT5FF 0560hDMA Control RegisterDMACNT5FF 0560hDMA Control RegisterDMACNT5FF 0560hDMA Control RegisterDMACNT5FF 0560hDMA Control RegisterDMACNT5FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address RegisterADCB6FF 0580hDevice B Address Counter RegisterADCB6FF 0580hDevice B Address RegisterADCB6FF 0580hDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLT66FF 0590hBlock Length RegisterBLT66	ADCB4	FF 0508h	Device B Address Counter Register
BLTR4FF 0514hBlock Length RegisterRQTR4FF 0518hRequest Timeout RegisterRQTCNT4FF 051ChRequest Timeout Counter RegisterDMACNT4FF 0520hDMA Control RegisterDMASTAT4FF 0524hDMA Status RegisterADCA5FF 0540hDevice A Address Counter RegisterADCA5FF 0544hDevice A Address Counter RegisterADCB5FF 0548hDevice B Address RegisterADCB5FF 0548hDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTC5FF 0550hBlock Length RegisterRQTR5FF 0550hBlock Length RegisterRQTR5FF 0550hBlock Length RegisterDMACNT5FF 0550hDMA Control RegisterDMACNT5FF 0560hDMA Status RegisterDMACNT5FF 0584hDevice A Address Counter RegisterADCA6FF 0584hDevice A Address RegisterADCA6FF 0584hDevice B Address Counter RegisterADCB6FF 0584hDevice B Address RegisterADCB6FF 0584hDevice B Address RegisterADCB6FF 0580hDevice B Address RegisterBLTC6FF 0590hBlock Length RegisterBLTC6FF 0590hBlock Length RegisterRQTR6FF 0594h	ADRB4	FF 050Ch	Device B Address Register
RQTR4FF 0518hRequest Timeout RegisterRQTCNT4FF 051ChRequest Timeout Counter RegisterDMACNT4FF 0520hDMA Control RegisterDMASTAT4FF 0524hDMA Status RegisterADCA5FF 0540hDevice A Address Counter RegisterADCA5FF 0544hDevice A Address RegisterADCB5FF 0544hDevice B Address RegisterADCB5FF 0548hDevice B Address RegisterADCB5FF 0546hDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTR5FF 0554hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterRQTR5FF 0556hRequest Timeout RegisterDMACNT5FF 0556hRequest Timeout RegisterDMACNT5FF 0566hDMA Status RegisterADCA6FF 0586hDevice A Address Counter RegisterADCA6FF 0588hDevice A Address RegisterADCA6FF 0588hDevice A Address RegisterADCA6FF 0588hDevice A Address RegisterADCA6FF 0588hDevice A Address RegisterADCB6FF 0588hDevice B Address RegisterADCB6FF 0590hBlock Length Counter RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length Counter RegisterRQTR6FF 0598hRequest Timeout Register	BLTC4	FF 0510h	Block Length Counter Register
RQTCNT4FF 051ChRequest Timeout Counter RegisterDMACNT4FF 0520hDMA Control RegisterDMASTAT4FF 0524hDMA Status RegisterADCA5FF 0540hDevice A Address Counter RegisterADCA5FF 0540hDevice A Address RegisterADCA5FF 0544hDevice A Address RegisterADCB5FF 0548hDevice B Address Counter RegisterADCB5FF 054ChDevice B Address RegisterADRB5FF 054ChDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLT75FF 0554hBlock Length RegisterRQTR5FF 055ChRequest Timeout RegisterDMACNT5FF 055ChRequest Timeout RegisterDMACNT5FF 0560hDMA Status RegisterDMASTAT5FF 0560hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0580hDevice A Address Counter RegisterADRA6FF 0580hDevice A Address RegisterADRA6FF 0580hDevice B Address Counter RegisterADRA6FF 0580hDevice B Address Counter RegisterADRA6FF 0580hDevice B Address RegisterADR66FF 0580hDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTC6FF 0590hBlock Length RegisterBLTR6FF 0598hRequest Timeout Register	BLTR4	FF 0514h	Block Length Register
DMACNT4FF 0520hDMA Control RegisterDMASTAT4FF 0524hDMA Status RegisterADCA5FF 0540hDevice A Address Counter RegisterADR45FF 0544hDevice A Address RegisterADCB5FF 0548hDevice B Address RegisterADR55FF 0548hDevice B Address RegisterBLTC5FF 054ChDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLT75FF 0554hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterDMACNT5FF 055ChRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterDMASTAT5FF 0560hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0580hDevice A Address Counter RegisterADRA6FF 0580hDevice A Address Counter RegisterADRA6FF 0580hDevice A Address RegisterADRA6FF 0588hDevice B Address RegisterADRB6FF 0580hDevice B Address RegisterADRB6FF 0580hDevice B Address RegisterADRB6FF 0580hDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0590hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	RQTR4	FF 0518h	Request Timeout Register
DMASTAT4FF 0524hDMA Status RegisterADCA5FF 0540hDevice A Address Counter RegisterADRA5FF 0544hDevice A Address RegisterADCB5FF 0548hDevice B Address Counter RegisterADRB5FF 0540hDevice B Address RegisterBLTC5FF 0540hDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTR5FF 0554hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterDMACNT5FF 0550hDMA Control RegisterDMASTAT5FF 0560hDMA Control RegisterDMASTAT5FF 0560hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0580hDevice A Address Counter RegisterADRA6FF 0580hDevice A Address RegisterADRA6FF 0580hDevice A Address RegisterADRA6FF 0580hDevice B Address RegisterADRB6FF 0580hDevice B Address RegisterADRB6FF 0590hBlock Length Counter RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0598hRequest Timeout Register	RQTCNT4	FF 051Ch	Request Timeout Counter Register
ADCA5FF 0540hDevice A Address Counter RegisterADRA5FF 0544hDevice A Address RegisterADCB5FF 0548hDevice B Address Counter RegisterADRB5FF 054ChDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTR5FF 0554hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterDMACNT5FF 055ChRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0580hDevice A Address RegisterADRA6FF 0588hDevice B Address RegisterADRB6FF 0580hDevice B Address RegisterADRB6FF 0590hBlock Length Counter RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTC6FF 0590hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	DMACNT4	FF 0520h	DMA Control Register
ADRA5FF 0544hDevice A Address RegisterADCB5FF 0548hDevice B Address Counter RegisterADRB5FF 054ChDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTR5FF 0554hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterDMACNT5FF 055ChRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterADCA6FF 0584hDevice A Address Counter RegisterADCA6FF 0584hDevice A Address Counter RegisterADCB6FF 0588hDevice B Address RegisterADCB6FF 0588hDevice A Address RegisterADRB6FF 0588hDevice B Address RegisterBLTC6FF 0580hDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	DMASTAT4	FF 0524h	DMA Status Register
ADCB5FF 0548hDevice B Address Counter RegisterADRB5FF 054ChDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTR5FF 0550hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterRQTCNT5FF 055ChRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterDMACNT5FF 0560hDMA Control RegisterDMACNT5FF 0564hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0588hDevice A Address RegisterADCB6FF 0588hDevice B Address RegisterADRB6FF 0580hDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0598hRequest Timeout RegisterRQTR6FF 0598hRequest Timeout Register	ADCA5	FF 0540h	Device A Address Counter Register
ADRB5FF 054ChDevice B Address RegisterBLTC5FF 0550hBlock Length Counter RegisterBLTR5FF 0554hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterRQTCNT5FF 055ChRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterDMASTAT5FF 0564hDAX Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0580hDevice A Address RegisterADCB6FF 0588hDevice B Address RegisterADCB6FF 0588hDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0598hRequest Timeout RegisterRQTR6FF 0598hRequest Timeout Register	ADRA5	FF 0544h	Device A Address Register
BLTC5FF 0550hBlock Length Counter RegisterBLTR5FF 0554hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterRQTCNT5FF 055ChRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterDMASTAT5FF 0564hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADCA6FF 0584hDevice A Address RegisterADCB6FF 0588hDevice B Address Counter RegisterADCB6FF 0588hDevice B Address Counter RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	ADCB5	FF 0548h	Device B Address Counter Register
BLTR5FF 0554hBlock Length RegisterRQTR5FF 0558hRequest Timeout RegisterRQTCNT5FF 055ChRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterDMASTAT5FF 0564hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0584hDevice A Address RegisterADCB6FF 0588hDevice B Address Counter RegisterADRB6FF 058ChDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0598hRequest Timeout RegisterRQTR6FF 0598hRequest Timeout Register	ADRB5	FF 054Ch	Device B Address Register
RQTR5FF 0558hRequest Timeout RegisterRQTCNT5FF 055ChRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterDMASTAT5FF 0564hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0584hDevice A Address RegisterADCB6FF 0588hDevice B Address Counter RegisterADR86FF 0588hDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	BLTC5	FF 0550h	Block Length Counter Register
RQTCNT5FF 055ChRequest Timeout Counter RegisterDMACNT5FF 0560hDMA Control RegisterDMASTAT5FF 0564hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0584hDevice A Address RegisterADCB6FF 0588hDevice B Address Counter RegisterADRB6FF 058ChDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0598hRequest Timeout RegisterRQTR6FF 0598hRequest Timeout Register	BLTR5	FF 0554h	Block Length Register
DMACNT5FF 0560hDMA Control RegisterDMASTAT5FF 0564hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0584hDevice A Address RegisterADCB6FF 0588hDevice B Address Counter RegisterADRB6FF 058ChDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	RQTR5		Request Timeout Register
DMASTAT5FF 0564hDMA Status RegisterADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0584hDevice A Address RegisterADCB6FF 0588hDevice B Address Counter RegisterADRB6FF 058ChDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	RQTCNT5	FF 055Ch	Request Timeout Counter Register
ADCA6FF 0580hDevice A Address Counter RegisterADRA6FF 0584hDevice A Address RegisterADCB6FF 0588hDevice B Address Counter RegisterADRB6FF 058ChDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	DMACNT5	FF 0560h	DMA Control Register
ADRA6FF 0584hDevice A Address RegisterADCB6FF 0588hDevice B Address Counter RegisterADRB6FF 058ChDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	DMASTAT5		DMA Status Register
ADCB6FF 0588hDevice B Address Counter RegisterADRB6FF 058ChDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register	ADCA6	FF 0580h	Device A Address Counter Register
ADRB6FF 058ChDevice B Address RegisterBLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register			
BLTC6FF 0590hBlock Length Counter RegisterBLTR6FF 0594hBlock Length RegisterRQTR6FF 0598hRequest Timeout Register			Device B Address Counter Register
BLTR6 FF 0594h Block Length Register RQTR6 FF 0598h Request Timeout Register			
RQTR6 FF 0598h Request Timeout Register			
RQTCNT6 FF 059Ch Request Timeout Counter Register			
	RQTCNT6	FF 059Ch	Request Timeout Counter Register

Copyright © 2007–2013, Texas Instruments Incorporated

www.ti.com

Table 12-4. DMA Controller Registers (continued)						
DMACNT6	FF 05A0h	DMA Control Register				
DMASTAT6	FF 05A4h	DMA Status Register				
ADCA7	FF 05C0h	Device A Address Counter Register				
ADRA7	FF 05C4h	Device A Address Register				
ADCB7	FF 05C8h	Device B Address Counter Register				
ADRB7	FF 05CCh	Device B Address Register				
BLTC7	FF 05D0h	Block Length Counter Register				
BLTR7	FF 05D4h	Block Length Register				
RQTR7	FF 05D8h	Request Timeout Register				
RQTCNT7	FF 05DCh	Request Timeout Counter Register				
DMACNT7	FF 05E0h	DMA Control Register				
DMASTAT7	FF 05E4h	DMA Status Register				
ADCA8	FF 0600h	Device A Address Counter Register				
ADRA8	FF 0604h	Device A Address Register				
ADCB8	FF 0608h	Device B Address Counter Register				
ADRB8	FF 060Ch	Device B Address Register				
BLTC8	FF 0610h	Block Length Counter Register				
BLTR8	FF 0614h	Block Length Register				
RQTR8	FF 0618h	Request Timeout Register				
RQTCNT8	FF 061Ch	Request Timeout Counter Register				
DMACNT8	FF 0620h	DMA Control Register				
DMASTAT8	FF 0624h	DMA Status Register				
ADCA9	FF 0640h	Device A Address Counter Register				
ADRA9	FF 0644h	Device A Address Register				
ADCB9	FF 0648h	Device B Address Counter Register				
ADRB9	FF 064Ch	Device B Address Register				
BLTC9	FF 0650h	Block Length Counter Register				
BLTR9	FF 0654h	Block Length Register				
RQTR9	FF 0658h	Request Timeout Register				
RQTCNT9	FF 065Ch	Request Timeout Counter Register				
DMACNT9	FF 0660h	DMA Control Register				
DMASTAT9	FF 0664h	DMA Status Register				
ADCA10	FF 0680h	Device A Address Counter Register				
ADRA10	FF 0684h	Device A Address Register				
ADCB10	FF 0688h	Device B Address Counter Register				
ADRB10	FF 068Ch	Device B Address Register				
BLTC10	FF 0690h	Block Length Counter Register				
BLTR10	FF 0694h	Block Length Register				
RQTR10	FF 0698h	Request Timeout Register				
RQTCNT10	FF 069Ch	Request Timeout Counter Register				
DMACNT10	FF 06A0h	DMA Control Register				
DMASTAT10	FF 06A4h	DMA Status Register				
ADCA11	FF 06C0h	Device A Address Counter Register				
ADRA11	FF 06C4h	Device A Address Register				
ADCB11	FF 06C8h	Device B Address Counter Register				
ADRB11	FF 06CCh	Device B Address Register				
BLTC11	FF 06D0h	Block Length Counter Register				
BLTR11	FF 06D4h	Block Length Register				

Table 12-4. DMA Controller Registers (continued)

TEXAS INSTRUMENTS

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

	Table 12-4. DMA Cor	ntroller Registers (continued)
RQTR11	FF 06D8h	Request Timeout Register
RQTCNT11	FF 06DCh	Request Timeout Counter Register
DMACNT11	FF 06E0h	DMA Control Register
DMASTAT11	FF 06E4h	DMA Status Register
ADCA12	FF 0700h	Device A Address Counter Register
ADRA12	FF 0704h	Device A Address Register
ADCB12	FF 0708h	Device B Address Counter Register
ADRB12	FF 070Ch	Device B Address Register
BLTC12	FF 0710h	Block Length Counter Register
BLTR12	FF 0714h	Block Length Register
RQTR12	FF 0718h	Request Timeout Register
RQTCNT12	FF 071Ch	Request Timeout Counter Register
DMACNT12	FF 0720h	DMA Control Register
DMASTAT12	FF 0724h	DMA Status Register
ADCA13	FF 0740h	Device A Address Counter Register
ADRA13	FF 0744h	Device A Address Register
ADCB13	FF 0748h	Device B Address Counter Register
ADRB13	FF 074Ch	Device B Address Register
BLTC13	FF 0750h	Block Length Counter Register
BLTR13	FF 0754h	Block Length Register
RQTR13	FF 0758h	Request Timeout Register
RQTCNT13	FF 075Ch	Request Timeout Counter Register
DMACNT13	FF 0760h	DMA Control Register
DMASTAT13	FF 0764h	DMA Status Register
ADCA14	FF 0780h	Device A Address Counter Register
ADRA14	FF 0784h	Device A Address Register
ADCB14	FF 0788h	Device B Address Counter Register
ADRB14	FF 078Ch	Device B Address Register
BLTC14	FF 0790h	Block Length Counter Register
BLTR14	FF 0794h	Block Length Register
RQTR14	FF 0798h	Request Timeout Register
RQTCNT14	FF 079Ch	Request Timeout Counter Register
DMACNT14	FF 07A0h	DMA Control Register
DMASTAT14	FF 07A4h	DMA Status Register
ADCA15	FF 07C0h	Device A Address Counter Register
ADRA15	FF 07C4h	Device A Address Register
ADCB15	FF 07C8h	Device B Address Counter Register
ADRB15	FF 07CCh	Device B Address Register
BLTC15	FF 07D0h	Block Length Counter Register
BLTR15	FF 07D4h	Block Length Register
RQTR15	FF 07D8h	Request Timeout Register
RQTCNT15	FF 07DCh	Request Timeout Counter Register
DMACNT15	FF 07E0h	DMA Control Register
DMASTAT15	FF 07E4h	DMA Status Register

12.9.1 Device A Address Counter Register n (ADCAn)

The Device A Address Counter register is a 32-bit, read/ write register. It holds the current address of either the source data item or the destination location, depending on the state of the DIR bit in the DMACNTn register. The ADA bit of DMACNTn register controls whether to adjust the pointer in the ADCAn register by the step size specified in the INCA field of DMACNTn register.

31

Device A Address Counter

12.9.2 Device A Address Register n (ADRAn)

The Device A Address register is a 32-bit, read/write register. It holds the starting address of either the next source data block, or the next destination data area, according to the DIR bit in the DMACNTn register.

31

Device A Address

12.9.3 Device B Address Counter Register n (ADCBn)

The Device B Address Counter register is a 32-bit, read/ write register. It holds the address of either the source data item, or the destination location, according to the DIR bit in the DMACNTn register. The ADCBn register is updated after each transfer cycle by INCB field of the DMACNTn register according to ADB bit of the DMACNTn register.

31

31

Device B Address Counter

12.9.4 Device B Address Register n (ADRBn)

The Device B Address register is a 32-bit, read/write register. It holds the starting address of either the next source data block or the next destination data area, according to the DIR bit in the DMACNTn register.

Device B Address

12.9.5 Block Length Counter Register n (BLTCn)

The Block Length Counter register is a 32-bit, read/write register. It holds the current number of DMA transfers to be executed in the current block. 0000 0000h is interpreted as 2³²-1 transfer cycles. BLTCn is decremented by one after each transfer cycle. A DMA transfer may consist of 1, 2, or 4 bytes, as selected by the TCS and WMODE bits in the DMACNTn register.

31

Block Length Counter Register n (BLTCn)

0

0

0

0

0

www.ti.com

12.9.6 Block Length Register n (BLTRn)

The Block Length register is a 32-bit, read/write register. It holds the number of DMA transfers to be performed for the next block. 0000 0000h is interpreted as 2^{32} -1 transfer cycles. Writing this register automatically sets the DMAS- TAT.VLD bit.

15	0
Block Length	

12.9.7 Request Timeout Register n (RQTRn)

The Request Timeout register is a 32-bit, read/write register. It holds the timeout time. After reset, the RQTRn registers are clear

31	15	8	0
Reserve	ed	Timeou	t

12.9.8 Request Timeout Counter Register n (RQTCNTn)

The Request Timeout Count register is a 32-bit, read-only register. It holds the current timeout count. A RQTCNTn register is loaded from its corresponding RQTRn register when its DMA request is asserted. The RQTCNTn register is decremented if the DMACNT.TOEN bit is set. After reset, the RQTCNTn registers are clear.

31	15	8	0
Reserved		TimeoutCounter	

ÈXAS

www.ti.com

12.9.9 DMA Control Register n (DMACNTn)

The DMA Control register is a 32-bit, read/write register that controls the operation of DMA channel n. This register is initialized to 000C 0000h at reset. Reserved bits must be written with 0.

7	6	5	4	3	2	1	0
Res.	ОТ	DIR	TCS	RTO	EOVR	ETC	CHEN
15	14	13	12	11	10	9	8
WMODE	II	ICB	ADB	IN	CA	ADA	SWRQ
22	21		1		18	17	16
TOEN	21		HPROT		10	PF	BBE
31		29	28				23
31	Reserved	29	20		SRCRQ		23
CHEN	The Channel Enable bit must be set to enable any DMA operation on this channel. Writing a 1 to this bit starts a ne DMA transfer even if it is currently a 1. If all DMACNTn.CHEN bits are clear, the DMA clock is disabled to reduce p 0 – Channel disabled. 1 – Channel enabled.						
ETC	If the Enable Int 0 – Interrupt dis 1 – Interrupt ena		Count bit is set, i	t enables an inter	rupt when the DM	ASTAT.TC bit is s	set.
EOVR	If the Enable Int 0 – Interrupt dis 1 – Interrupt ena		is set, it enables a	an interrupt when	the DMASTAT.OV	R bit is set.	
ETO	If the Enable Int 0 – Interrupt dis 1 – Interrupt ena		bit is set, it enable	es an interrupt wh	en the DMASTAT.	TO bit is set.	
TCS	The Transfer Cy overridden if the 0 – Byte transfe	The Transfer Cycle Size bit specifies the number of bytes transferred in each DMA transfer cycle. This bit will be overridden if the WMODE bit is set. 0 – Byte transfers (8 bits per cycle). 1 – Word transfers (16 bits per cycle).					
DIR		rection bit specifies ddressed by the Al the destination.			e to Device A.		
ОТ	0 – Single-buffe	Type bit specifies the read of the specifies the read of the second seco	ne operation mode	e of the DMA cont led.	troller.		
SWRQ	software DMA r disabled and the	The Software DMA Request bit is written with a 1 to initiate a software DMA request. Writing a 0 to this bit deactivates to software DMA request. The SWRQ bit must only be written when the peripheral DMA requests for the channel are disabled and the channel is inactive (DMASTAT.CHAC = 0). 0 - Software DMA request is inactive.					
ADA	0 – ADCAn add	Address Control bin ress unchanged. ress incremented of				/MODE and TCS	bits.
INCA	The Increment/I address increment	Decrement ADCAn ent/decrement.	field together with	h the WMODE an	d TCS bits control	the step size for	the Device A
	INCA	WMODE	TCS	Step Size			
	00	0	0	+1			
	01	0	0	+2			
	10	0	0	-1			
	11	0	0	-2			
	00	0	1	+2			
	01	0	1	+4			
	10	0	1	-2			
	11	0	1	-4			
	0X	1	х	+4			
	1X	1	Х	-4			

TEXAS INSTR	UMENTS				CP3CN37
www.ti.com				SNOSCW8A – JANUARY 2007– REVISED	DECEMBER 2013
ADB	0 – ADCBn add	Iress unchanged.		updating the Device B Address. as controlled by the INCB field and WMODE and TCS b	its.
INCB	The Increment/I	Decrement ADCBn	field specifies th	e step size for the Device B address increment/decreme	ent.
	INCB	WMODE	TCS	Step Size	
	00	0	0	+1	
	01	0	0	+2	
	10	0	0	-1	
	11	0	0	-2	
	00	0	1	+2	
	01	0	1	+4	
	10	0	1	-2	
	11	0	1	-4	
	0X	1	Х	+4	
	1X	1	Х	-4	
WMODE	cycle size selec	d Mode bit controls ated by the TCS bit. cle size is 32 bits.	whether the trar	sfer cycle size is 32 bits. If set, it overrides the TCS bit.	0 – Transfer
BBE	channels 0 and 0 – Single trans	1 have burst buffer	s. For the other	transfer type or data collection/burst transfer type is us channels, the BBE bit is reserved.	ed. Only
PF	0 – The DMAC		r. The DMA trar	or the peripheral is the flow controller. sfer is terminated when the BLTCn register counts dow	n to zero.
HPROT	The HPROT fie	ld must be 0011b (c	lefault value).		
TOEN	The Enable Tim 0 – Timeout dis 1 – Timeout ena	abled.	nether DMA requ	est timeout monitoring is enabled.	
SRCRQ	The Source Re	quest field specifies	a peripheral reg	ister used as the source or destination for a DMA trans	fer.

www.ti.com

12.9.10 DMA Status Register n (DMASTATn)

The DMA status register is a 32-bit register that holds the status information for the DMA channel. This register is cleared at reset. The reserved bits always return zero when read. The ERR, VLD, OVR, and TC bits are sticky (once set by the occurrence of the specific condition, they remain set until explicitly cleared by software). These bits can be cleared by writing 1 to their bit positions in the DMASTAT register to be cleared. Writing 0 to these bits has no effect.

7	6	5	4	3	2	1	0
	Reserved	BNE	ERR	VLD	CHAC	OVR	TC
15	14	13	12				8
	Reserved				BLV		
31							16
			Res	erved			
тс	reached 0 and th 0 – Terminal cou	e PF bit was clea	ar). ot occur.	er was completed	by a terminal cour	nt condition (BLTC	Cn Register
OVR	The behavior of the Channel Overrun bit depends on the operation mode (single buffer, double buffer, or auto-initialize) of the DMA channel. In double-buffered mode (DMACNTn.OT = 0): The OVR bit is set when the present transfer is completed (BLTCn = 0), but the parameters for the next transfer (address and block length) are not valid (DMASTATn.VLD = 0). In auto-initialize mode (DMACNTn.OT = 1): The OVR bit is set when the present transfer is completed (BLTCn = 0), and the DMASTATn.TC bit is still set. In single-buffer mode: Operates in the same way as double-buffer mode. In single-buffered mode, the DMASTATn.VLD bit should always be clear, so it will also be set when the DMASTATn.TC bit is set. Therefore, the OVR bit can be ignored in this mode.						
CHAC	Data written to th 0 – Channel inac	ne CHAC bit is igr tive.	nored.		atus of the channe ter is 1 and BLTCn		t is read-only.
VLD	The Transfer Parameters Valid bit indicates whether the transfer parameters for the next block to be transferred are valid. Writing the BLTRn register automatically sets this bit. The bit is cleared in the following cases: The present transfer is completed and the ADRAn, ADRBn, and BLTRn registers have been loaded to the ADCAn, ADCBn, and BLTCn registers. Writing 1 to the VLD bit.						
ERR		alid or an increme on did not occur.	error response h ental access goes		during the last trar	isfer. This may oc	cur because the
BNE	The Buffer Not E 0 – Burst buffer i 1 – Burst buffer h	s empty.	s whether there is	valid data in the b	ourst buffer.		
BLV	The Burst Buffer	Level field indica	tes the number of	valid bytes in the	burst buffer.		
ТО	time the DMA red	quest for this char ccurred since this		,	eached its terminal	count). This bit is	s cleared every

13 INTERRUPTS

The Interrupt Control Unit (ICU) receives interrupt requests from internal and external sources and generates interrupts to the CPU. The highest-priority interrupt is the Non-Maskable Interrupt (NMI), which is triggered by a falling edge received on the NMI input pin.

The maskable interrupts (IRQn) have a fixed, linear priority from IRQ0 through IRQ70, in which IRQ0 has the lowest priority and IRQ70 has the highest priority. IRQ0 is not implemented, so IRQ1 is the lowest priority maskable interrupt that may occur in normal operation.

13.1 NON-MASKABLE INTERRUPTS

The Interrupt Control Unit (ICU) receives the external NMI input and generates the NMI signal driven to the CPU. The NMI input is an asynchronous input with Schmitt trigger characteristics and an internal synchronization circuit, therefore no external synchronizing circuit is needed. The NMI pin triggers an exception on its falling edge.

13.1.1 Non-Maskable Interrupt Processing

At reset, NMI interrupts are disabled and must remain disabled until software initializes the interrupt table, interrupt base register (INTBASE), and the interrupt mode. The external NMI interrupt is enabled by setting the EXNMI.ENLCK bit and will remain enabled until a reset occurs. Alternatively, the external NMI interrupt or a reset occurs.

13.2 MASKABLE INTERRUPTS

The IRQn interrupt channels are level-sensitive. Any edge sensitivity must be implemented at the interrupt source. The IRQ interrupts are enabled and disabled by the E and I bits in the PSR register. Both bits must be set to enable maskable interrupts. The EI and DI instructions are used to set (enable) and clear (disable) the E bit.

Each interrupt source can be individually enabled or disabled under software control through the IENR register and also through interrupt enable bits in the peripherals that request the interrupts.

13.2.1 Maskable Interrupt Processing

The IVECT register holds the interrupt vector number of the enabled and pending interrupt with the highest priority, mapped to the range 10h to 56h. IRQ0 is mapped to 10h, while IRQ70 is mapped to 56h. The CPU performs an interrupt acknowledge bus cycle on receiving a maskable interrupt request from the ICU. During the interrupt acknowledge cycle, a byte is read from address FF FE00h (the IVECT register). The byte is used as an index into the Dispatch Table to determine the address of the interrupt handler.

Because IRQ0 is not connected to any interrupt source, the interrupt vector number 10h should not be generated. How- ever, an entry should be provided for this vector in the dispatch table that points to a default interrupt handler. One possible condition in which this vector number may occur is deassertion of an interrupt at its source before the interrupt controller generates an interrupt acknowledge cycle.

TEXAS INSTRUMENTS

www.ti.com

13.2.2 Maskable Interrupt Sources

Table 13-1 shows the interrupt sources assigned to the maskable interrupts.

Table 13-1	. Maskable	Interrupts	Assignment
------------	------------	------------	------------

IRQn	Description
IRQ70	RTI (Timer 0)
IRQ69	Real-Time Clock
IRQ68	Reserved
IRQ67	Reserved
IRQ66	Reserved
IRQ65	Reserved
IRQ64	Reserved
IRQ63	Reserved
IRQ62	Reserved
IRQ61	USB Interrupt
IRQ60	Reserved
IRQ59	DMA Channel 0
IRQ58	DMA Channel 1
IRQ57	DMA Channel 2
IRQ56	DMA Channel 3
IRQ55	DMA Channel 4
IRQ54	DMA Channel 5
IRQ53	DMA Channel 6
IRQ52	DMA Channel 7
IRQ51	DMA Channel 8
IRQ50	DMA Channel 9
IRQ49	DMA Channel 10
IRQ48	DMA Channel 11
IRQ47	DMA Channel 12
IRQ46	DMA Channel 13
IRQ45	DMA Channel 14
IRQ44	DMA Channel 15
IRQ43	Reserved
IRQ42	Reserved
IRQ41	Reserved
IRQ40	USARTO Rx
IRQ39	USARTO Tx
	USARTO CTS
IRQ38	
IRQ37	TAO (MFTO Port A)
IRQ36	TB0 (MFT0 Port B)
IRQ35	TA1 (MFT1 Port A)
IRQ34	TB1 (MFT1 Port B)
IRQ33	VTU0A (VTU Interrupt Request 1)
IRQ32	VTU0B (VTU Interrupt Request 2)
IRQ31	VTUOC (VTU Interrupt Request 3)
IRQ30	VTU0D (VTU Interrupt Request 4)
IRQ29	Microwire/SPI Rx/Tx
IRQ28	Codec
IRQ27	Advanced Audio Interface

www.ti.com

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2	013
--	-----

	Table 15-1. Maskable interrupts Assignment (continueu)
IRQ26	I ² S Interface
IRQ25	CVSD/PCM Converter 0
IRQ24	CVSD/PCM Converter 1
IRQ23	ACCESS.bus
IRQ22	VTU1A (VTU Interrupt Request 1)
IRQ21	VTU1B (VTU Interrupt Request 2)
IRQ20	VTU1C (VTU Interrupt Request 3)
IRQ19	VTU1D (VTU Interrupt Request 4)
IRQ18	CAN
IRQ17	USART1 Rx
IRQ16	USART1 Tx
IRQ15	UART2 Rx
IRQ14	UART2 Tx
IRQ13	UART3 Rx
IRQ12	UART3 Tx
IRQ11	Reserved
IRQ10	Reserved
IRQ9	ADC (Done)
IRQ8	MIWU Interrupt 0
IRQ7	MIWU Interrupt 1
IRQ6	MIWU Interrupt 2
IRQ5	MIWU Interrupt 3
IRQ4	MIWU Interrupt 4
IRQ3	MIWU Interrupt 5
IRQ2	MIWU Interrupt 6
IRQ1	MIWU Interrupt 7
IRQ0	Reserved

Table 13-1. Maskable Interrupts Assignment (continued)

All reserved interrupt vectors must point to default or error interrupt handlers.

13.3 INTERRUPT PRIORITY GROUPS

When more than one interrupt is asserted, two levels of priority are used to determine which interrupt is taken:

- *Group Priority*—each interrupt belongs to one of four priority groups numbered from 0 to 3, in which lower group numbers have higher priority.
- *Channel Priority*—each channel has a unique channel number, in which higher channel numbers have higher priority.

Group priority always takes precedence over channel priority. Channel priority is only used to resolve priority among interrupts in the same group.

Any interrupt may belong to any group, as programmed in the INTGPAR and INTGPBR registers. The corresponding bits in each register assign the interrupt channel to one of the groups, as shown in Table 13-2.

STRUMENTS

Table 13-2.	Interrupt	Priority	Group	Assignment
	micinapi	1 1101109	Cioup	Assignment

Priority Group for IRQn	INTGPBRn	INTGPARn
Group 0 (highest priority)	0	0
Group 1	0	1
Group 2	1	0
Group 3 (lowest priority)	1	1

For example, if INTGPAR6:1 is loaded with 011101b and INTGPBR6:1 is loaded with 010001b, the priority groups for these interrupts are assigned as shown in Figure 13-1.

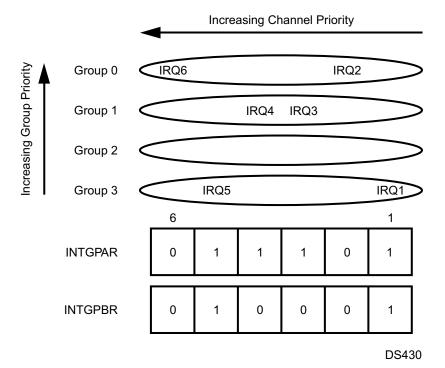


Figure 13-1. Interrupt Priority Groups

If the six IRQ1 through IRQ6 interrupts are asserted, then IRQ6 is taken because this interrupt belongs to the highest priority group (lowest group number), and it has the highest channel number within that group.

If only IRQ1 and IRQ5 are asserted, then IRQ5 is taken because this is the highest priority interrupt in group 3 and there are no asserted interrupts in other groups.

13.4 NESTED INTERRUPTS

Nested NMI interrupts are permanently enabled when the ENLCK bit in the EXNMI register is used to enable NMI interrupts. When nesting is not desired, the EN bit may be set to enable one occurrence of the NMI interrupt, after which NMI interrupts are disabled until the EN bit is set again.

Nested maskable interrupts are disabled by default, because the I bit in the PSR is automatically cleared when the interrupt is acknowledged. An interrupt handler can allow nested maskable interrupts by setting the I bit using the LPR instruction.

Nesting of specific maskable interrupts can be selectively enabled or disabled using the IENR register, before setting the I bit. Any number of levels of nested interrupts are allowed, limited only by the available memory for the interrupt stack.

:P3CN37

13.5 SOFTWARE INTERRUPTS

Setting a bit in the SOFTR register requests the corresponding maskable interrupt. The request stays active until the bit is cleared by software or a device reset. Software interrupt requests are maskable in the IENR registers, and active interrupts (from either hardware or software sources) are indicated in the ISTR register.

13.6 INTERRUPT CONTROLLER REGISTERS

Table 13-3 lists the interrupt controller registers.

Name	Address	Description
IVECT	FF FE00h	Interrupt Vector Register
NMISTAT	FF FE04h	Non-Maskable Interrupt Status Register
EXNMI	FF FE08h	External NMI Trap Control and Status Register
ISTR0	FF FE10h	Interrupt Status Register 0
ISTR1	FF FE14h	Interrupt Status Register 1
ISTR2	FF FE18h	Interrupt Status Register 2
IENR0	FF FE20h	Interrupt Enable and Mask Register 0
IENR1	FF FE24h	Interrupt Enable and Mask Register 1
IENR2	FF FE28h	Interrupt Enable and Mask Register 2
SOFTR0	FF FE40h	Software Interrupt Register 0
SOFTR1	FF FE44h	Software Interrupt Register 1
SOFTR2	FF FE48h	Software Interrupt Register 2
INTGPAR0	FF FE50h	Interrupt Priority Group A Register 0
INTGPAR1	FF FE58h	Interrupt Priority Group A Register 1
INTGPAR2	FF FE60h	Interrupt Priority Group A Register 2
INTGPBR0	FF FE54h	Interrupt Priority Group B Register 0
INTGPBR1	FF FE5Ch	Interrupt Priority Group B Register 1
INTGPBR2	FF FE64h	Interrupt Priority Group B Register 2
IDBG	FF FEFCh	Interrupt Debug R egister

Table 13-3. Interrupt Controller Registers

13.6.1 Interrupt Vector Register (IVCT)

The IVCT register is a 32-bit, read-only register which reports the encoded value of the highest priority maskable interrupt that is both asserted and enabled. The register is read by the CPU during an interrupt acknowledge bus cycle, and INTVECT is valid during that time. It may contain invalid data while INTVECT is updated. The register is initialized to 0000 0010h at reset.

31		8	7	0
	Reserved		INT\	/ECT

INTVECT The Interrupt Vector field indicates the highest priority interrupt which is both asserted and enabled. The valid range is from 10h to 56h.

13.6.2 Non-Maskable Interrupt Status Register (NMISTAT)

The NMISTAT register is a 32-bit, read-only register. It holds the status of the current pending Non-Maskable Interrupt (NMI) requests. On the CP3CN37, the external NMI input is the only source of NMI interrupts. The NMISTAT register is cleared on reset and each time its contents are read.

31	1	0
	Reserved	EXT
FXT	The External NMI request bit indicates whether an external non-maskable interrupt request has occurred.	Refer to the

The External NMI request bit indicates whether an external non-maskable interrupt request has occurred. Refer to the description of the EXNMI register for additional details. 0 - No external NMI request.

1 - External NMI request has occurred.

13.6.3 External NMI Trap Control and Status Register (EXNMI)

The EXNMI register is a 32-bit, read/write register. It indicates the current value of the NMI pin and controls the NMI interrupt trap generation based on a falling edge of the NMI pin. ENCLK, PIN, and EN are cleared on reset. When writing to this register, all reserved bits must be written with 0 for the device to function properly

31		3	2	1	0
	Reserved		ENLCK	PIN	EN
EN	The EXNMI trap enable bit is one of two bits that can be reset and whenever the NMI interrupt occurs (EXNMI.E frequently but nested NMI traps are not desired. For th the trap handler. When used this way, the ENLCK bit s (software can set this bit only if EXNMI.EXT is cleared) interrupt stack pointer have been set up. 0 – NMI interrupts not enabled by this bit (but may be e 1 – NMI interrupts enabled.	EXT set). It is in ese applications hould never be , and should or	tended for applicat s, the EN bit needs set. The EN bit ca hly be set after the	ions where the \overline{N} to be re-enabled n be set and clea	IMI input toggles d before exiting ared by software
PIN	The PIN bit indicates the state (non-inverted) on the $\overline{\text{NI}}$ 0 – $\overline{\text{NMI}}$ pin not asserted.	VI input pin. Th	is bit is read-only, o	data written into i	t is ignored.

1 - NMI pin asserted. ENLCK The EXNMI trap enable lock bit is used to permanently enable NMI interrupts. Only a device reset can clear the ENLCK bit. This allows the external NMI feature to be enabled after the interrupt base register and the interrupt stack pointer have been set up. When the ENLCK bit is set, the EN bit is ignored. 0 - NMI interrupts not enabled by this bit (but may be enabled by the EN bit). 1 - NMI interrupts enabled.

13.6.4 Interrupt Enable and Mask Register 0 (IENR0)

The IENR0 register is a 32-bit, read/write register which holds bits that individually enable and disable the maskable interrupt sources IRQ1 to IRQ31. The register is initialized to 0000 0000h at reset.

31		1	0
	IENO		Res.
IEN0	Each Interrupt Enable bit enables or disables the corresponding interrupt channels IRQ1 not used, bit 0 is ignored. 0 – Interrupt is disabled. 1 – Interrupt is enabled.	through IRQ31.	Because IRQ0 is

13.6.5 Interrupt Enable and Mask Register 1 (IENR1)

The IENR1 register is a 32-bit, read/write register which holds bits that individually enable and disable the maskable interrupt sources IRQ63 to IRQ32. The register is initialized to 0000 0000h at reset.

31		0
	IEN1	
IEN1	Each Interrupt Enable bit enables or disables the corresponding interrupt channels IRQ32 through IRQ63. 0 – disabled. 1 – Interrupt is enabled.	Interrupt is

www.ti.com

13.6.6 Interrupt Enable and Mask Register 2 (IENR2)

The IENR2 register is a 32-bit, read/write register which holds bits that individually enable and disable the maskable interrupt sources IRQ70 to IRQ64. Only bits 6:0 of this register are used. The register is initialized to 0000 0000h at reset.

31		0
	IEN2	

IEN2

Each Interrupt Enable bit enables or disables the corresponding interrupt channels IRQ64 through IRQ70. 0 – Interrupt is disabled. 1 – Interrupt is enabled.

13.6.7 Interrupt Status Register 0 (ISTR0)

The ISTR0 register is a 32-bit, read-only register. It indicates which maskable interrupt inputs IRQ31 to IRQ1 are active. These bits are not affected by the state of the corresponding IENR0 bits. Because the IRQ0 interrupt is not used, bit 0 always reads as 0.

31	1	0
	ISTO	Res.
IST0	The Interrupt Status bits indicate if a maskable interrupt source is signalling an interrupt request.	

The Interrupt Status bits indicate if a maskable interrupt source is signalling an interrupt request. 0 – Interrupt is not active.

1 - Interrupt is active.

13.6.8 Interrupt Status Register 1 (ISTR1)

The ISTR1 register is a 32-bit, read-only register. It indicates which maskable interrupt inputs IRQ63 to IRQ31 are active. These bits are not affected by the state of the corresponding IENR1 bits.

31		0
	IST1	
IST1	The Interrupt Status bits indicate if a maskable interrupt source is signaling an interrupt request. 0 – Interrupt is not active. 1 – Interrupt is active.	

13.6.9 Interrupt Status Register 2 (ISTR2)

The ISTR2 register is a 32-bit, read-only register. It indicates which maskable interrupt inputs IRQ70 to IRQ64 are active. These bits are not affected by the state of the corresponding IENR2 bits. Only bits 6:0 of this register are used.

31		0
	IST2	
IST2	The Interrupt Status bits indicate if a maskable interrupt source is signaling an interrupt request.	

The Interrupt Status bits indicate if a maskable interrupt source is signaling an interrupt request. 0 – Interrupt is not active.

1 – Interrupt is active.

13.6.10 Software Interrupt Register 0 (SOFTR0)

The SOFTR0 register is a 32-bit, read/write register. Setting a bit in this register activates the corresponding maskable interrupt IRQ31 to IRQ1. Bit 0 of this register is reserved. The register is initialized to 0000 0000h at reset.

31		1	0
	SOFT0		Res.
SOFT0	The Software Interrupt bits activate the corresponding maskable interrupt when written with 1. 0 – Interrupt is not active. 1 – Interrupt is active.		

Copyright © 2007-2013, Texas Instruments Incorporated

13.6.11 Software Interrupt Register 1 (SOFTR1)

The SOFTR1 register is a 32-bit, read/write register. Setting a bit in this register activates the corresponding maskable interrupt IRQ63 to IRQ31. The register is initialized to 0000 0000h at reset.

31		0
	SOFT1	

SOFT1

The Software Interrupt bits activate the corresponding maskable interrupt when written with 1. 0 – Interrupt is not active.

1 – Interrupt is active.

13.6.12 Software Interrupt Register 2 (SOFTR2)

The SOFTR2 register is a 32-bit, read/write register. Setting a bit in this register activates the corresponding maskable interrupt IRQ70 to IRQ64. Only bits 6:0 of this register are used. The register is initialized to 0000 0000h at reset.

31		0
	SOFT2	
SOFT2	The Software Interrupt bits activate the corresponding maskable interrupt when written with 1. 0 – Interrupt is not active. 1 – Interrupt is active.	

13.6.13 Interrupt Priority Group A Register 0 (INTGPAR0)

The INTGPAR0 register is a 32-bit, read/write register. Bits in this register specify the least significant bit for selecting the priority group of the corresponding interrupt IRQ31 to IRQ1. Bit 0 of this register is reserved. The register is initialized to 0000 0000h at reset.

31	1	0
	INTGPA0	Res.
INTGPA0	The Interrupt Priority Group A bits specify the least significant bit for selecting one of four interrupt priority $0 - 1$ Interrupt belongs to group 0 or 2.	groups.

1 - Interrupt belongs to group 1 or 3.

13.6.14 Interrupt Priority Group A Register 1 (INTGPAR1)

The INTGPAR1 register is a 32-bit, read/write register. Bits in this register specify the least significant bit for selecting the priority group of the corresponding interrupt IRQ63 to IRQ31. The register is initialized to 0000 0000h at reset.

31		0
	INTGPA1	
INTGPA1	The Interrupt Priority Group A bits specify the least significant bit for selecting one of four interrupt priority groups 0 – Interrupt belongs to group 0 or 2. 1 – Interrupt belongs to group 1 or 3.	S.

13.6.15 Interrupt Priority Group A Register 2 (INTGPAR2)

The INTGPAR2 register is a 32-bit, read/write register. Bits in this register specify the least significant bit for selecting the priority group of the corresponding interrupt IRQ70 to IRQ64. Only bits 6:0 of this register are used. The register is initialized to 0000 0000h at reset

31	0
	INTGPA2
INTGPA2	The Interrupt Priority Group A bits specify the least significant bit for selecting one of four interrupt priority groups. 0 – Interrupt belongs to group 0 or 2. 1 – Interrupt belongs to group 1 or 3.

www.ti.com

13.6.16 Interrupt Priority Group B Register 0 (INTGPBR0)

The INTGPBR0 register is a 32-bit, read/write register. Bits in this register specify the most significant bit for selecting the priority group of the corresponding interrupt IRQ31 to IRQ1. Bit 0 of this register is reserved. The register is initialized to 0000 0000h at reset.

31	1	0
	INTGPB0	Res.

INTGPB0 The Interrupt Priority Group B bits specify the most significant bit for selecting one of four interrupt priority groups. 0 – Interrupt belongs to group 0 or 1. 1 – Interrupt belongs to group 2 or 3.

13.6.17 Interrupt Priority Group B Register 1 (INTGPBR1)

The INTGPBR1 register is a 32-bit, read/write register. Bits in this register specify the most significant bit for selecting the priority group of the corresponding interrupt IRQ63 to IRQ31. The register is initialized to 0000 0000h at reset.

31	0
	INTGPB1
INTGPB1	The Interrupt Priority Group B bits specify the most significant bit for selecting one of four interrupt priority groups. 0 – Interrupt belongs to group 0 or 1.

1 – Interrupt belongs to group 2 or 3.

13.6.18 Interrupt Priority Group B Register 2 (INTGPBR2)

The INTGPBR2 register is a 32-bit, read/write register. Bits in this register specify the most significant bit for selecting the priority group of the corresponding interrupt IRQ70 to IRQ64. Only bits 6:0 of this register are used. The register is initialized to 0000 0000h at reset.

31	0
	INTGPB2
INTGPB2	The Interrupt Priority Group B bits specify the most significant bit for selecting one of four interrupt priority groups. 0 – Interrupt belongs to group 0 or 1.

1 -Interrupt belongs to group 2 or 3.

13.6.19 Interrupt Debug Register (IDBG)

The IDBG register is a 32-bit, read-only register. Fields in this register indicate the interrupt number of the highest priority currently asserted interrupt and the interrupt number returned to the CPU during the last interrupt acknowledge cycle. (These may differ if a higher-priority interrupt is asserted after the interrupt acknowledge cycle.) The register is initialized to 0000 0000h at reset.

31	16	15	8	7	0					
Reserved		IRC	IRQVECT		INTVECT					
INITY/ECT The INITY/ECT field indicates the interrupt vector number of the highest priority surrently seconted interrupt										

INTVECT The INTVECT field indicates the interrupt vector number of the highest priority currently asserted interrupt.

IRQVECT The IRQVECT field indicates the interrupt vector number returned to the CPU during the last interrupt acknowledge cycle.

13.7 USAGE NOTES

The recommended initialization sequence is:

- 1. Initialize the INTBASE register of the CPU.
- 2. Prepare the interrupt routines of the relevant interrupts.
- 3. Set up the interrupt conditions in the peripherals.
- 4. Set the relevant bits in the interrupt enable/mask registers (IENRn).
- 5. Set the I bit in the PSR.

Clearing an interrupt request before it is serviced can cause a spurious interrupt, (that is, the CPU detects an interrupt not reflected by IVECT). Software must clear interrupt requests only after interrupts are disabled.

Clearing any of the interrupt enable bits should be performed while the I bit in the PSR register is clear.

www.ti.com

14 CLOCK GENERATION

The clock circuitry includes oscillators for generating a 12- MHz Main Clock and an optional 32.768-kHz Slow Clock from external crystal networks. Alternatively, either clock may be replaced by an external clock source.

Two identical PLLs are available to provide higher clock frequencies (up to 96 MHz) using Main Clock as a reference frequency. The PLLs also may be used to synchronize with an external clock driven on the I²S interface (I2SCLK).

Most of the functional blocks of the device operate from one of the global clocks generated by this module:

- Main Clock—12-MHz clock generated by an on-chip oscillator or received from an external clock source.
- PLL1 Clock—clock synthesized by PLL1 from Main Clock or the external I2SCLK clock input.
- PLL2 Clock—clock synthesized by PLL2 from Main Clock or the external I2SCLK clock input.
- HCLK Clock—clock used by the CPU and devices on the CPU core AHB bus. HCLK Clock is generated by a prescaler from Main Clock, PLL1 Clock, or PLL2 Clock. Available prescale factors are 1 to 2048 in increments of 1/2 clock period. In Power Save mode, HCLK Clock is driven by Slow Clock.
- PCLK Clock—clock used by devices on the peripheral APB bus. PCLK Clock is generated by a prescaler from HCLK Clock. Available prescale factors are 1, 2, and 4.
- Slow Clock—32.768 kHz clock used in low-power modes. Slow Clock is generated by an on-chip oscillator, received from an external clock source or generated by a prescaler from Main Clock. Available prescale factors are 1 to 8192 in increments of 1/2 clock period.

CP3CN37

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com

NSTRUMENTS

Texas

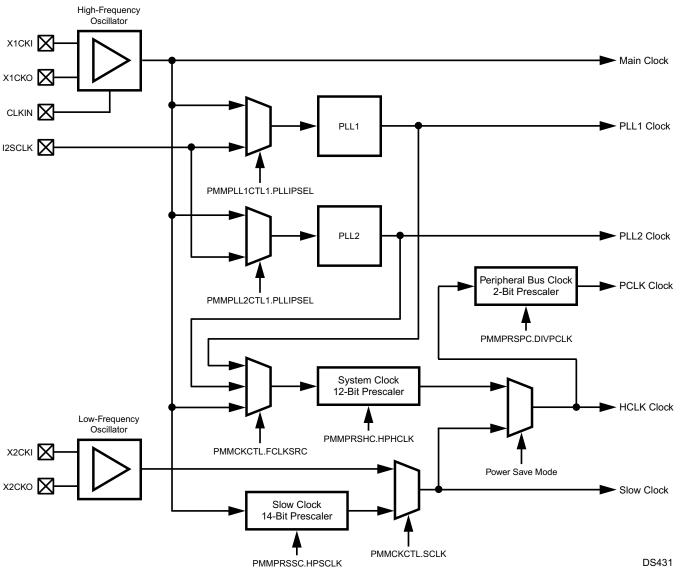


Figure 14-1 is block diagram of the global clock generation logic.

Figure 14-1. Global Clock Generation

P3CN37

www.ti.com

14.1 EXTERNAL CRYSTAL NETWORKS

An external crystal network is connected to the X1CKI and X1CKO pins to generate the Main Clock, unless an external clock signal is driven on the CLKIN pin. A similar external crystal network may be used at pins X2CKI and X2CKO for the Slow Clock. If an external crystal network is not used for the Slow Clock, the Slow Clock is generated through a prescaler from Main Clock.

The crystal network you choose may require external components different from the ones specified in this datasheet. In this case, consult with TI's engineers for the component specifications.

The crystals and other oscillator components must be placed close to the X1CKI/X1CKO and X2CKI/X2CKO device input pins to keep the trace lengths to an absolute minimum.

Figure 14-2 shows the external crystal network for the X1CKI and X1CKO pins. The crystal must be an AT-cut type. Figure 14-3 shows the external crystal network for the X2CKI and X2CKO pins. The crystal may be an N-cut or XY-bar type. Section 22.2 shows the component specifications for the 12-MHz crystal network, and Table 14-2 shows the component specifications for the 32.768 kHz crystal network.

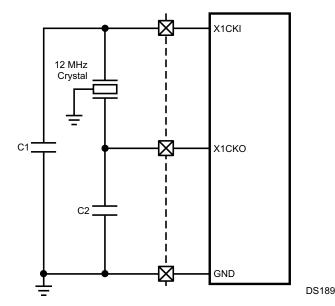


Figure 14-2. 12 MHz Oscillator Crystal Network

Table 14-1. 12 MHz Oscillator Component Values
--

Symbol	Component	Parameter	Min.	Тур.	Max.
f	Crystal	Resonant Frequency		12 MHz	
Rm	Crystal	Motional Resistance (ESR)			50 Ω
CO	Crystal	Case Capacitance			7 pF
C1, C2	Capacitors	External Capacitance		22 pF	
CL	Capacitors	Load Capacitance		11 pF	

www.ti.com

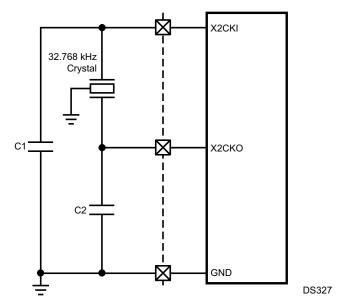


Figure 14-3. 32.768 kHz Oscillator Crystal Network

Symbol	Component	Parameter	Min.	Тур.	Max.
f	Crystal	Resonant Frequency		32.768 kHz	
Cm	Crystal	Motional Capacitance		1.7 fF	
Rm	Crystal	Motional Resistance (ESR)			65 Ω
CO	Crystal	Shunt Capacitance			1.3 pF
Q	Crystal	Q Factor		40000	
CL	Capacitors	Load Capacitance		25 pF	

14.2 MAIN CLOCK

Main Clock is generated by the 12-MHz high-frequency oscillator or driven by an external signal (typically the LMX5251 or LMX5252 Bluetooth radio chip). It can be stopped by the Power Management Module to reduce power consumption during periods of reduced activity. When the Main Clock is started or restarted, a 14-bit timer generates a start-up delay to determine when the high-frequency oscillator is stable.

An external clock can be driven on the X1CKI input, but it must not exceed 1.8V. Alternatively, a 3.3V external clock can be driven on the CLKIN pin, in which case the X1CKI input must be tied low. The frequency must be a multiple of 12 MHz, up to 96 MHz. (If a frequency other than 12 MHz is chosen, the timing of the external bus must be compatible with the external memory device used to boot up the system.) If the Power Management Module indicates the high frequency oscillator should be stopped, the on-chip Main Clock signal is stopped even if it was driven by an external clock signal on CLKIN or X1CKI that continues toggling.

14.3 SLOW CLOCK

Slow Clock is necessary for operating the device in reduced power modes and to provide a clock source for modules such as the Timing and Watchdog Module.

The low-frequency oscillator may be used to generate Slow Clock in a manner similar to the Main Clock. It can be stopped by the Power Management Module to reduce power consumption during periods of reduced activity. When the Slow Clock is started or restarted, a 6-bit timer generates a start-up delay to determine when the low-frequency oscillator is stable.

For systems that do not require a reduced power consumption mode, the external crystal network may be omitted for the low-frequency oscillator. In this case, Slow Clock is synthesized by dividing the Main Clock by a prescaler factor. The prescaler consists of a 14-bit prescaler. This allows a choice of clock divisors ranging from 1 to 8192 in increments of 1/2 Main Clock period. The resulting Slow Clock frequency must not exceed 100 kHz.

A software-controlled multiplexer selects either the prescaled Main Clock or the 32.768 kHz oscillator as the Slow Clock. At reset, the prescaled Main Clock is selected, ensuring that the Slow Clock is always present initially. Selection of the 32.768 kHz oscillator as the Slow Clock source disables the clock prescaler, and it may allow the high-frequency oscillator to be turned off in some low-power modes, for minimum power consumption and radiated emissions. The high-frequency oscillator cannot be disabled when the prescaler is selected as the source for Slow Clock.

An external clock may be driven on the X2CKI input. It must not exceed 1.8V.

14.4 PLL CLOCKS

The CP3CN37 has two identical PLLs for generating clocks. These are two purposes for providing PLL clock generators:

Higher Frequency—the PLLs can generate clock frequencies up to 96 MHz using the 12 MHz Main Clock as a reference. Frequencies above 12 MHz are needed to run the CPU at its maximum speed. Also, the USB peripheral requires a 60 MHz clock.

Synchronization with External Devices—some devices (such as external codecs) require operation at a precise frequency which is not an integer multiple of a standard CP3CN37 clock frequency. By synchronizing a PLL with the external device, it can be interfaced directly without treating its I/O as asynchronous signals.

After reset, the PLLs are powered down. Software can program and enable the PLLs to start them running. Each PLL has a programmable start-up counter to indicate when the PLL has become stable. By default, the start-up counter will indicate the PLL has become stable after 32K cycles of the PLL Clock.

To enable the PLL after reset or after PLL power down, perform the following sequence:

- Set the divider ratios in the PMMPLLnMDIV, PMMPLLnNDIV, PMMPLLnNMOD, and PMMPLLnPDIV registers to acceptable values for the desired output frequency. If the number of PLL cycles to allow for stabilization should be different from the default value (32K cycles), set the PLL Startup Counter register (PMMPLLnSTUP).
- 2. Power up the PLL by setting the PMMPLLnCTL1.PLLEN field to 01b.
- 3. Wait until the PMMPLLnCTL2.PLLCLKSTB bit has become set, which indicates the PLL is stable.
- 4. The PMMCKCTL.FCLKSRC field can then be loaded with 00b to select PLL1 Clock as the source for the HCLK Clock. It can be loaded with 01b to select PLL2 Clock as the source. The switch only occurs if the selected PLL is stable. To switch from PLL1 Clock to PLL2 Clock, Main Clock must be selected as the clock source during an intermediate step (direct switching between the two PLL Clocks is not allowed).

If any of the divisors (PMMPLLnMDIV, PMMPLLnNDIV, PMMPLLnNMOD, and PMMPLLnPDIV) are to be changed, the HCLK Clock source must be switched to Main Clock (if the PLL was driving HCLK Clock), and the PLL must be powered down (for example, by clearing the PMMPLLnCTL1.PLLEN field). Then, the procedure above may be performed to restart the PLL after loading new values in the registers.

TEXAS INSTRUMENTS

14.4.1 PLL Programming

The PLLs have the structure shown in Figure 14-4. The PMMPLLnMDIV, PMMPLLnNDIV, PMMPLLnNDIV, and PMMPLLnPDIV registers specify the M, N, and P divisors which control the operation of the PLL. The N divisor has an integer part specified in the PMMPLLnNDIV register and a fractional part specified in the PMMPLLnNMOD register.

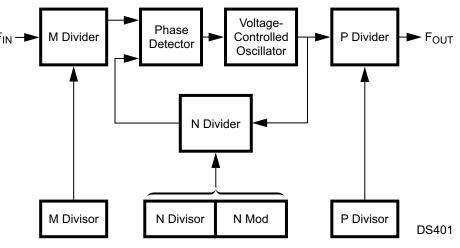


Figure 14-4. PLL Module

The reference frequency FREF is derived from the input frequency FIN, as described by the following equation:

 $F_{REF} = F_{IN} / MDIV$

The voltage-controlled oscillator output frequency F_{VCO} is derived from the input frequency F_{IN} , as described by the following equation:

 $F_{VCO} = F_{IN} = F_{IN} X ((NMOD) / (32 X MDIV))$

 F_{REF} must be between 2 and 4 MHz. F_{VCO} must not exceed 153 MHz.

The output frequency F_{OUT} is derived from the input frequency F_{IN} , as described by the following equation:

$$F_{OUT} = F_{IN} \times \left(\frac{NDIV + \frac{NMOD}{32}}{MDIV \times PDIV} \right)$$
(3)

(4)

(1)

(2)

It is possible for software to load divisors that result in unstable or marginally stable PLL operation. Therefore, only divisors recommended in Table 14-3 and Table 14-4 should be used. If any other frequencies are desired, contact TI.

FIN (MHz)	M Div.	N Div.	N Mod.	P Div.	F _{OUT} (MHz)
12	4	32	0	4	24
12	6	64	0	4	32
12	4	48	0	4	36
12	4	32	0	2	48
12	3	30	0	2	60
12	6	64	0	2	64

Table 14-3. Recommended HCLK Clock Divisors

www.ti.com

Table 14-3. Recommended HCLK Clock Divisors ((continued)

12	4	48	0	2	72
12	4	30	0	1	90
12	3	24	0	1	96

The PLLs are designed to drive the telematics codec and other devices with audio sample rates (Fs) of 44.1 kHz and 48 kHz (as well as 32 kHz, 24 kHz, 22.05 kHz, and so on) and 125× or 250× oversampling. Therefore, the two common clock requirements are 11.025 MHz (44.1 kHz × 250) and 12.000 MHz (48 kHz × 250). These frequencies can be obtained from any common input clock rate between 10 MHz and 20 MHz as shown Table 14-4.

Source	F _S (kHz)	F _{IN} (MHz)	M Div.	N Div.	N Mod.	P Div.	F _{OUT} (MHz)
System	44.1	11	5	55	4	11	11.025
System	44.1	11.2896	4	46	2	12	11.025
System	44.1	12	5	55	3	12	11.025
System	44.1	13	5	55	4	13	11.025
System	44.1	14.4	4	30	20	10	11.025
System	44.1	16.2	5	30	20	9	11.025
System	44.1	16.8	4	26	8	10	11.025
System	44.1	19.2	4	26	8	10	11.025
System	44.1	19.44	6	30	20	9	11.025
System	44.1	19.8	6	36	24	11	11.025
System	48	11	4	48	0	11	12
System	48	12	4	40	0	10	12
System	48	12.288	6	46	28	8	12
System	48	13	13	96	0	8	12
System	48	14.4	6	40	0	8	12
System	48	16.2	6	40	0	9	12
System	48	16.8	7	40	0	8	12
System	48	19.2	6	30	0	8	12
System	48	19.44	9	50	0	9	12
System	48	19.8	6	40	0	11	12
l²S	48	1.536	1	78	4	10	12
l ² S	44.1	1.4112	1	78	4	10	11.025
BT/USB	11.025	12	4	36	24	40	2.75625
BT/USB	32	12	4	32	0	12	8
GSM	22.05	13	21	102	16	21	5.125

Table 14-4. Recommended Audio Clock Divisors

(5)

14.5 HCLK CLOCK

HCLK Clock drives the CPU and the modules on the CPU core AHB bus. It is generated by a 12-bit prescaler from Main Clock, PLL1 Clock, or PLL2 Clock. The prescaler allows setting the HCLK Clock period to any length between 1 and 2048 periods of the clock source, in increments of 1/2 period. The default setting for the HCLK Clock period is 16 clock source periods.

Software may configure Slow Clock to drive HCLK Clock during Power Down and Idle modes.

14.6 PCLK CLOCK

PCLK Clock drives the modules on the peripheral APB bus. It is generated by a 2-bit prescaler from HCLK Clock, for a division factor of 1, 2, or 4. The default is 1. The maximum PCLK Clock frequency is 48 MHz.

14.7 AUXILIARY CLOCKS

Independent clocks are available for certain peripherals that may require clock frequencies different from those provided as global clocks. An auxiliary clock also may be used for peripherals that require independence from the clock-switching mechanism applied to HCLK Clock and PCLK Clock during low-power modes. Eight auxiliary clock generators are provided for these peripherals. Some peripherals have clock multiplexers to allow selection among several available clock sources.

Each auxiliary clock generator has an input multiplexer for selecting an input clock source:

- Main Clock
- PLL1 Clock
- PLL2 Clock

A 12-bit prescaler provides a prescale factors from 1 to 2048 clock periods of the input clock in increments of 1/2 clock period. For example, if the selected clock source is 12 MHz and the desired auxiliary clock frequency is 1 MHz, the divisor should be 2 \times 12 or 24. However, the value loaded in the PMMAUXnPRSC prescaler register is biased by 1, so the actual value loaded into the register will be 23 (decimal).

 $PMMAUXnPRSC = ((2 x F_{MAIN}) / (F_{DESIRED})) - 1$

Zero is an undefined value, so the shortest period that an auxiliary clock may have is 2 half-clocks, which results in the same clock rate as the prescaler input clock.

Each auxiliary clock is available for one or more peripherals, as listed in Table 14-5.

Auxiliary Clock	Peripheral	Comments
1	ADC, AAI	
2	CVSD/PCM Converter 0	Supports a 2-MHz mode in which data is processed at a fixed rate. Also
3	CVSD/PCM Converter 1	supports a free-running mode in which data is processed on demand. The free-running mode does not require a specific clock frequency. The CVSD modules may operate from independent clocks.
4	Telematics Codec ADC 1, ADC 2, and Stereo DACs	Requires an accurate clock frequency, typically 125x or 128x the PCM frame rate.
5	I ² S Interface	
6	USB	Requires an accurate 60 MHz clock. Also requires a HCLK Clock >30 MHz.
7	Not Used	Not Used
8	AAI	Requires an accurate frequency to match the bit clock and frame sync required by the external codec.

Table 14-5. Auxiliary Clocks Available to Peripherals

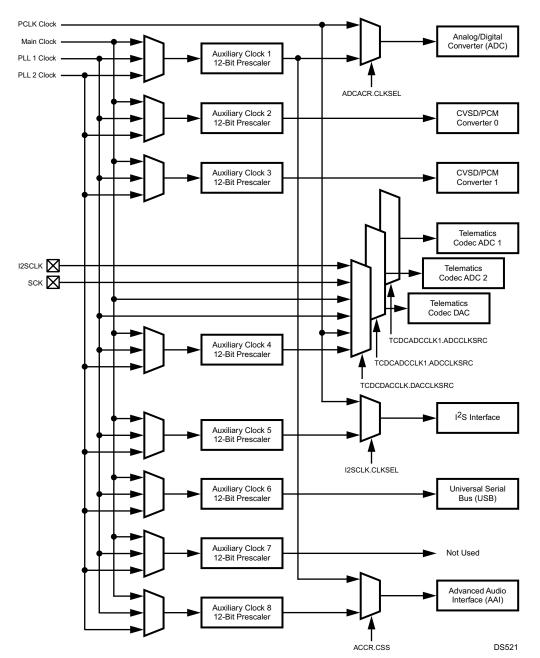


Figure 14-5 is block diagram of the auxiliary clock generation logic.

Figure 14-5. Auxiliary Clock Generators

14.8 CLOCK GENERATION REGISTERS

Table 14-6 lists the clock generation registers.

Table 14-6	. Clock and	Reset	Registers
------------	-------------	-------	-----------

Name	Address	Description
PMMCKCTL	FF A400h	Clock and Reset Control Register
PMMSR	FF A408h	Clock Status Register
PMMPRSHC	FF A40Ch	HCLK Clock Prescaler Register
PMMPRSPC	FF A410h	PCLK Clock Prescaler Register
PMMPRSSC	FF A414h	Low Frequency Clock Prescaler Register
PMMPLL1CTL1	FF A420h	PLL1 Control Register 1
PMMPLL1CTL2	FF A424h	PLL1 Control Register 2
PMMPLL1MDIV	FF A428h	PLL1 M Divider Prescaler Register
PMMPLL1NDIV	FF A42Ch	PLL1 N Divider Prescaler Register
PMMPLL1NMOD	FF A434h	PLL1 N Divider Prescaler Register
PMMPLL1PDIV	FF A430h	PLL1 P Divider Prescaler Register
PMMPLL1STUP	FF A438h	PLL1 Start-Up Counter Register
PMMPLL2CTL1	FF A440h	PLL2 Control Register 1
PMMPLL2CTL2	FF A444h	PLL2 Control Register 2
PMMPLL2MDIV	FF A448h	PLL2 M Divider Prescaler Register
PMMPLL2NDIV	FF A44Ch	PPLL2 N Divider Prescaler Register
PMMPLL2NMOD	FF A454h	PLL2 N Divider Prescaler Register
PMMPLL2PDIV	FF A450h	PLL2 P Divider Prescaler Register
PMMPLL2STUP	FF A458h	PLL2 Start-Up Counter Register
PMMAUX1CTL	FF A500h	Auxiliary Clock 1 Control Register
PMMAUX1PRSC	FF A504h	Auxiliary Clock 1 Prescaler Register
PMMAUX2CTL	FF A510h	Auxiliary Clock 2 Control Register
PMMAUX2PRSC	FF A514h	Auxiliary Clock 2 Prescaler Register
PMMAUX3CTL	FF A520h	Auxiliary Clock 3 Control Register
PMMAUX3PRSC	FF A524h	Auxiliary Clock 3 Prescaler Register
PMMAUX4CTL	FF A530h	CAuxiliary Clock 4 Control Register
PMMAUX4PRSC	FF A534h	Auxiliary Clock 4 Prescaler Register
PMMAUX5CTL	FF A540h	Auxiliary Clock 5 Control Register
PMMAUX5PRSC	FF A544h	Auxiliary Clock 5 Prescaler Register
PMMAUX6CTL	FF A550h	Auxiliary Clock 6 Control Register
PMMAUX6PRSC	FF A554h	Auxiliary Clock 6 Prescaler Register
PMMAUX7CTL	FF A560h	Auxiliary Clock 7 Control Register
PMMAUX7PRSC	FF A564h	Auxiliary Clock 7 Prescaler Register
PMMAUX8CTL	FF A570h	Auxiliary Clock 8 Control Register
PMMAUX8PRSC	FF A574h	Auxiliary Clock 8 Prescaler Register

Texas Instruments

www.ti.com

14.8.1 Clock and Reset Control Register (PMMCKCTL)

The PMMCKCTL register is a byte-wide, read/write register that controls the clock selection and contains the power-on reset status bit. At reset, the PMMCKCTL register is initialized as described below:

7	5	4	3	2	1	0
	Reserved		KSRC	SCLK	Res.	POR
POR	The Power-On-Reset bit is set whe not set. Writing a 1 to this bit will b 0 – Software cleared this bit. 1 – Software has not cleared his bi	e ignored, and th	e previous value o			red by software,
SCLK	The Slow Clock Select bit controls stable, this bit will read as 1 but the be cleared while the high-frequenc 0 – Slow Clock driven by prescaled 1 – Request asserted to drive Slow	e clock source wi y oscillator is not I Main Clock.	Il not switch until t stable. At reset, tl	he low-frequency o his bit is cleared.		
FCLKSRC						is clear (PLL

14.8.2 Clock Status Register (PMMSR)

The PMMSR register is a byte-wide read-only register that holds the two bits which indicate whether the high-frequency oscillator and the low-frequency oscillator are stable.

7	2	1	0
	Reserved	MCLKSTB	SCLKSTB
SCLKSTB	The Slow Clock Stable bit indicates whether the low-frequency oscillator is producing 0 – Low-frequency oscillator is unstable, disabled, or not oscillating.	a stable clock.	
MCLKSTB	The Main Clock Stable bit indicates whether the high-frequency oscillator is producin 0 – High-frequency oscillator is unstable, disabled, or not oscillating. 1 – High-frequency oscillator is available.	j a stable clock.	

14.8.3 HCLK Clock Prescaler Register (PMMPRSHC)

The PMMPRSHC register is a 16-bit read/write register that holds the 12-bit prescaler available to generate HCLK Clock. The register is initialized to 001Fh at reset.

15	12	11 0
	Reserved	HPHCLK
HPHCLK	prescaler used to	High Frequency Clock field holds the divisor (expressed in half-periods of the input clock source) for the o generate HCLK Clock. The clock source is divided by ((HPHCLK + 1) \div 2) to obtain the HCLK Clock. In d by 1, so the default value of this field specifies 32 half-periods, which is a divisor of 16. Zero is an for this field.

14.8.4 PCLK Clock Prescaler Register (PMMPRSPC)

The PMMPRSPC register is a byte-wide, read/write register that holds the divisor for generating PCLK Clock from HCLK Clock. The maximum PCLK Clock frequency is 48 MHz. The register is initialized to 00h at reset.

7		2	1	0
	Reserved		DIV	PCLK
DIVPCLK	The Divisor PCLK Clock field has four defined values: $00b - \div 1$			

01b – ÷2 10b – ÷4

11b - Reserved.

14.8.5 Slow Clock Prescaler Register (PMMPRSSC)

The PMMPRSSC register is a 16-bit, read/write register that holds the 14-bit prescaler available to generate Slow Clock from Main Clock. The register is initialized to 02DBh at reset..

	15	14	13	0
		Reserved		HPSCLK
HP	SCLK	The Half Periods	Slow Clock field	holds the divisor (expressed in half-periods of the input clock source) for the prescaler

used to generate Slow Clock. The Main Clock is divided by ((HPSCLK + 1) - 2) to obtain the Slow Clock. At reset, the HPSCLK register is initialized to 02DBh, which generates a Slow Clock rate of 32.786885 kHz. This is about 0.5% faster than a Slow Clock generated from an external 32.768 kHz crystal network. Zero is an undefined value for this field.

14.8.6 PLLn Control Register 1 (PMMPLLnCTL1)

The PMMPLLnCNT1 registers are 16-bit, read/write registers that hold control fields for the corresponding PLL. The registers are initialized to 00h at reset.

15		5	4	3	2	1	0
	Reserved		PLLI	PSEL	PLLDCOE	PLL	EN
PLLEN	The PLL Enable field controls whether the PLL is enabled generate HCLK Clock or an Auxiliary Clock, the clocks mu 00 – PLL disabled. 01 – PLL enabled. 10 – Reserved. 11 – Reserved.					I PLL use	d to
PLLDCOE	The PLL Direct Clock Output Enable bit controls the corre this bit is set and the PLL Clock is stable. 0 – PLL Clock output disabled. 1 – PLL Clock is enabled when stable.	sponding PL	L output.	The PLL	Clock output is o	lriven only	/ when
PLLIPSEL	The PLL Input Select field selects the input clock source f 00 – Main Clock. 01 – I2SCLK pin. 10 – Reserved. 11 – Reserved.	or the corres	ponding	PLL.			

NSTRUMENTS

EXAS

NDIV

14.8.7 PLLn Control Register 2 (PMMPLLnCTL2)

The PMMPLLnCNT2 registers are 16-bit, read/write registers that hold control fields for the corresponding PLL. The registers are initialized to 00h at reset.

15		2	1	0
	Reserved		DPLLC	PLLCLKSTB

PLLCLKSTB The PLL Clock Stable bit indicates when the corresponding PLL Clock is stable. 0 – PLL Clock not stable. 1 – PLL Clock is stable.

DPLLC The Disable PLL Clock Enable bit controls whether the corresponding PLL is disabled when entering the Power Save or Idle modes. This bit is cleared when a hardware wake-up event occurs. 0 – PLL may be enabled in Power Save and Idle modes.

PLL may be enabled in Power Save and Idle modes.
 PLL is always disabled in Power Save and Idle modes.

14.8.8 PLLn M Divider Register (PMMPLLnMDIV)

The PMMPLLnMDIV registers are byte-wide, read/write registers that hold the 8-bit M divisor for the corresponding PLL. The registers are initialized to 00h at reset.

7		0
	MDIV	
MDIV	The M Divisor field specifies an integer divisor. See Section 14.4.1 for more information.	

14.8.9 PLLn M Divider Register (PMMPLLnMDIV)

The PMMPLLnNDIV registers are byte-wide, read/write registers that hold the 8-bit integer part of the N divisor. The registers are initialized to 00h at reset..

7		0
	NDIV	

The N Divisor field specifies the integer part of the N divisor. See Section 14.4.1 for more information.

14.8.10 PLLn N Mod Register (PMMPLLnNMOD)

The PMMPLLnNMOD registers are 16-bit, read/write registers that hold the 5-bit fractional part of the N divisor for the corresponding PLL and a control field for the level of dithering in effect. The registers are initialized to 00h at reset.

15 14	13 8	7 0
NMOD_DITH	Reserved	NMOD
NMOD NMOD_DITH		N divisor. See Section 14.4.1 for more information. hering to be applied to the PLL Clock to suppress tone artifacts that level is sufficient for a wide range of applications.

14.8.11 PLLn P Divider Register (PMMPLLnPDIV)

The PMMPLLnPDIV registers are byte-wide, read/write registers that hold the 8-bit P divisor for the corresponding PLL. The register is initialized to 00h at reset.

7		0
	PDIV	

PDIV

The P Divisor field specifies an integer divisor. See Section 14.4.1 for more information.

14.8.12 PLLn Start-Up Counter Register (PMMPLLnSTUP)

The PMMPLLnSTUP registers are 16-bit, read/write registers that specify a 10-bit integer number of clock periods that must occur before the corresponding PLL Clock is considered stable. The PLL Clock output is not driven unless the PLL is stable and the PMMPLLnCTL1.PLLDCOE bit is set. The registers are initialized to 007Fh at reset.

15	10	9		0
	Reserved		CLKCNT	

CLKCNT The CLKCNT field specifies the number of PLL Clock cycles which must occur before the PLL is considered stable. The number of cycles is (256 × (CLKCNT + 1)), therefore the default is 32,768 cycles.

14.8.13 Auxiliary Clock n Control Register (PMMAUXnCTL)

The PMMAUXnCTL registers are byte-wide, read/write registers that control the Auxiliary Clock generators. The registers are initialized to 06h at reset (except PMMAUX7CTL which is initialized to 07h). Because Auxiliary Clock 7 is not used, the enable bit for this clock should be cleared.

7		3	2	1	0	
	Reserved		AUXC	LKSRC	AUXCLKEN	
AUXCLKEN	The Auxiliary Clock Enable bit enables the corres 0 – PLL Clock output disabled. 1 – PLL Clock is enabled when stable.	ponding Auxiliary Clo	ock output.			
AUXCLKSRC		The Auxiliary Clock Source field selects the input clock source for the corresponding Auxiliary Clock generator. When switching from one PLL to another, there must be an intermediate step in which Main Clock is selected. 10 – PLL1 Clock. 11 – PLL2 Clock. 10 – Reserved.				

14.8.14 Auxiliary Clock n Prescaler Register (PMMAUXnPRSC)

The PMMAUXnPRSC registers are 16-bit read/write registers that hold the 12-bit clock divisors (expressed in halfclocks) for the prescalers used to generate the corresponding Auxiliary Clocks from Main Clock, PLL1 Clock, or PLL2 Clock (as selected by the PMMAUXnCTL.AUXCLKSRC field). The registers are initialized to 00FFh at reset, except PMMAUX7PRSC which is initialized to 0001h.

15	12	2 11	(0
	Reserved		HPACLK	

HPACLKThe Half Periods Per Auxiliary Clock field specifies the number of half-clocks used for generating the Auxiliary Clock. The
clock source is divided by ((HPACLK + 1) \div 2) to obtain the auxiliary clock. Zero is an undefined value for this field.

15 RESET

There are five sources of reset:

- Power-On Reset—on-chip power-on detector and timer.
- External Reset—assertion of the RESET input.
- Software Reset—enabled by writing special code sequences to the SWRESET register.
- Timing and Watchdog Module (TWM)—overflow of the watchdog timer.
- SDI Reset—reset from the Serial Debug Interface (SDI)

15.1 POWER-ON RESET

The on-chip Power On Reset (POR) circuit generates a positive edge on the internal reset signal when VCC rises above V_{TRIP} (typically 1.38V). The VCC rise time from 0V to V_{TRIP} must not exceed the maximum t_{TRIP} specification. After triggering the POR circuit, the rise time from V_{TRIP} to a stable VCC must not exceed the maximum t_D specification. After reset has occurred, the POR is specified to rearm when VCC falls below 400 mV (although it may rearm at a higher voltage, up to 600 mV), and it will be retriggered when VCC again rises above VTRIP.. There must be a delay of at least 950 µs before retriggering the POR.

15.2 RESET INPUT TIMING

The CP3CN37 has specific timing requirements that must be met to prevent improper program behavior, such as corruption of an external flash memory programming operation in progress when the reset is received. This timing sequence shown in Figure 15-1.

All reset circuits must ensure that this timing sequence is always maintained during power-up and powerdown. The design of the power supply also affects how this sequence is implemented.

The power-up sequence is:

- 1. The RESET pin must be held low until *both* IOVCC and VCC have reached the minimum levels specified in the DC Characteristics section. IOVCC and VCC are allowed to reach their nominal levels at the same time which is the best-case scenario.
- 2. After both of these supply voltage rails have met this condition, then the RESET pin may be driven high. At power-up an internal 14-bit counter is set to 3FFFh and begins counting down to 0 after the crystal oscillator becomes stable. When this counter reaches 0, the onchip RESET signal is driven high unless the external RESET pin is still being held low. This prevents the CP3CN37 from coming out of reset with an unstable clock source.

The power-down sequence is:

- 1. The RESET pin must be driven low as soon as *either* the IOVCC or VCC voltage rail reaches the minimum levels specified in the DC Characteristics.
- 2. The RESET pin must then be held low until the Main Clock is stopped. The Main Clock will decay with the same profile as IOVCC.

Meeting the power-down reset conditions ensures that software will not be executed at voltage levels that may cause incorrect program execution or corruption of the flash memories. This situation must be avoided because the Main Clock decays with the IOVCC supply rather than stopping immediately when IOVCC falls below the minimum specified level.

www.ti.com

STRUMENTS

The external reset circuits presented in the following sections provide varying levels of additional fault tolerance and expandability and are presented as possible examples of solutions to be used with the CP3CN37. It is important to note, however, that any design for the reset circuit and power supply must meet the timing requirements shown in Figure 15-1.

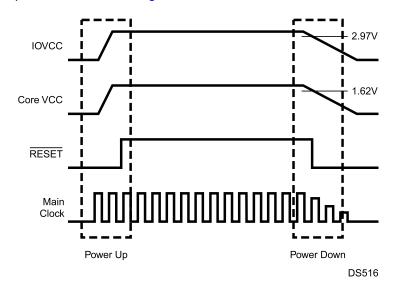
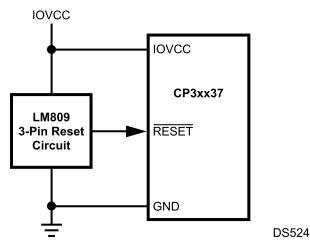



Figure 15-1. Power-On Reset Timing

15.2.1 Simple External Reset

A simple external reset circuit with brown-out and glitch protection based on the LM809 3-Pin Microprocessor Reset Circuit is shown in Figure 15-2. The LM809 produces a 240-ms logic low reset pulse when the power supply rises above a threshold voltage. Various reset thresholds are available for the LM809, however the options for 2.93V and 3.08V are most suitable for a CP3CN37 device operating from an IOVCC at 3.0V to 3.3V.

15.2.2 Manual and SDI External Reset

An external reset circuit based on the LM3724 5-Pin Microprocessor Reset Circuit is shown in Figure 15-3. The LM3724 produces a 190-ms logic low reset pulse when the power supply rises above a threshold voltage or a manual reset button is pressed. Various reset thresholds are available for the LM3724, however the option for 3.08V is most suitable for a CP3CN37 device operating from an IOVCC at 3.3V.

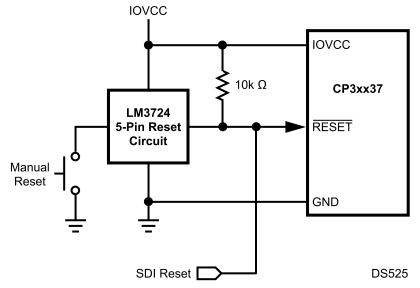


Figure 15-3. Manual and SDI External Reset

The LM3724 provides a debounced input for a manual pushbutton reset switch. It also has an open-drain output which can be used for implementing a wire-OR connection with a reset signal from a serial debug interface. This circuit is typical of a design to be used in a development or evaluation environment, however it is a good recommendation for all general CP3CN37 designs. If an SDI interface is not implemented, an LM3722 with active pullup may be used.

15.2.3 Fault-Tolerant External Reset

An external reset circuit based on the LM3710 Microprocessor Supervisory Circuit is shown in Figure 23-9. It provides a high level of fault tolerance in that it provides the ability to monitor both the VCC supply for the core logic and the IOVCC supply. It also provides a low-voltage indication for the IOVCC supply and an external watchdog timer.

Figure 15-4. Fault-Tolerant External Reset

The signals shown in Figure 23-9 are:

- Core VCC—the 1.8V power supply rail for the core logic.
- IOVCC—the 3.0–3.3V power supply rail for the I/O logic.
- Watchdog Input (WDI)—this signal is asserted by the CP3CN37 at regular intervals to indicate normal operation. A general-purpose I/O (GPIO) port may be used to provide this signal. If the internal watchdog timer in the CP3CN37 is used, then the LM3704 Microprocessor Supervisory Circuit can provide the same features as the LM3710 but without the watchdog timer.
- RESET—an active-low reset signal to the CP3CN37. The LM3710 is available in versions with active pullup or an open-drain RESET output.
- Power-Fail Input (PFI)—this is a voltage level derived from the Core VCC power supply rail through a simple resistor divider network.
- Power-Fail Output (PFO)—this signal is asserted when the voltage on PFI falls below 1.225V. PFO is connected to the non-maskable interrupt (NMI) input on the CP3CN37. A system shutdown routine can then be invoked by the NMI handler.
- Low Line Output (LLO)—this signal is asserted when the main IOVCC level fails below a warning threshold voltage but remains above a reset detection threshold. This signal may be routed to the NMI input on the CP3CN37 or to a separate interrupt input.

These additional status and feedback mechanisms allow the CP3CN37 to recover from software hangs or perform system shutdown functions before being placed into reset.

The standard reset threshold for the LM3710 is 3.08V with other options for different watchdog timeout and reset timeouts. The selection of these values are much more application-specific. The combination of a watchdog timeout period of 1600 ms and a reset period of 200 ms is a reasonable starting point.

16 POWER MANAGEMENT MODULE

The Power Management Module (PMM) improves the efficiency of the CP3CN37 by changing the operating mode (and therefore the power consumption) according to the required level of device activity. The device implements four power modes:

- Active Mode—CPU and core bus peripherals operate from HCLK Clock, which is generated by a prescaler from Main Clock, PLL1 Clock, or PLL2 Clock. Either PLL may be powered down if its output is not used to generate HCLK Clock or any Auxiliary Clock.
- Power-Save Mode—CPU and core bus peripherals operate from Slow Clock. Any of the PLLs and high-frequency oscillator may be powered down, if its output is not used to generate Slow Clock or any Auxiliary Clock.
- Idle Mode—CPU and most or all peripherals are powered down. A watchdog timeout (from a timer running on Slow Clock), external reset, or MIWU input can break out of this mode.
- Halt Mode—only an external reset or MIWU input can break out of this mode.

Table 16-1 summarizes the differences between power modes: the state of the high-frequency oscillator (on or off), PLLs, HCLK Clock source (clock used by CPU and core bus peripherals), and clock source used by the Timing and Watchdog Module (TWM).

Mode	High-Frequency Oscillator	PLLs	HCLK Clock Source	TWM Clock Source	
Active	On	On or Off	Prescaler	Slow Clock	
Power Save	On or Off	On or Off	Slow Clock	Slow Clock	
Idle	On or Off	On or Off	None	Slow Clock	
Halt	Off	Off	None	None	

Table 16-1. Power Mode Operating Summary

The low-frequency oscillator continues to operate in all four modes and power must be provided continuously to the device power supply pins. In Halt mode, however, Slow Clock does not toggle, and as a result, the Timing and Watchdog Module does not operate. For the Power Save and Idle modes, the high-frequency oscillator can be turned on or off under software control, if the low-frequency oscillator is used to drive Slow Clock.

Software can configure either PLL to be powered down in Active, Power Save, and Idle mode, as long as it is not driving HCLK Clock or an Auxiliary Clock generator.

Table 16-2 shows the clock sources used by the CP3CN37 device modules and their behavior in each power mode.

		011-			
Module	Active	Power Save	ldle	Halt	Clock Source(s)
CPU	On	On/Off	Off	Off	HCLK Clock
MIWU	On	On	On	Active	PCLK Clock
PMM	On	On	On	Active	Slow Clock
TWM	On	On	On	Off	Slow Clock
A/D Converter	On/Off	On/Off	On/Off	Off*	Aux Clk 1, PCLK Clock
CVSD/PCM 0	On/Off	On/Off	On/Off	Off	Aux Clk 2
CVSD/PCM 1	On/Off	On/Off	On/Off	Off	Aux Clk 3
Codec	On/Off	On/Off	On/Off	Off	Aux Clk 1, Aux Clk 4, PCLK Clock, PLL1 Clk, PLL2 Clk, I2SCLK, AAI SCK

Table 16-2. Module Activity Summary

Copyright © 2007–2013, Texas Instruments Incorporated

www.ti.com

I ² S Interface	On/Off	On/Off	On/Off	Off	Aux Clk 5, PCLK Clock
USB	On/Off	On/Off	On/Off	Off	Aux Clk 6
AAI	On/Off	On/Off	On/Off	Off	Aux Clk 1, Aux Clk 8
All Others	On/Off	On/Off	Off	Off	HCLK Clock PCLK Clock

Table 16-2. Module Activity Summary (continued)

* The Analog/Digital Converter (ADC) module is not automatically disabled by entering Halt mode, however its clock is stopped so no conversions may be performed in Halt mode. For maximum power savings, software must disable the ADC module before entering Halt mode.

A module shown as On/Off in Table 16-2 may be enabled or disabled by software. A module shown as Active continues to operate even while its clock is suspended, which allows wake-up events to be processed during Idle and Halt modes.

16.1 ACTIVE MODE

In Active mode, the high-frequency oscillator is active and generates the 12-MHz Main Clock. If the PLL Clocks are not needed, the PLLs may remain powered off. Most devices on the CPU core bus are driven by HCLK Clock, and most APB bus devices are driven by PCLK Clock.

When entering Active mode from a mode in which the high-frequency oscillator, PLLs, or low-frequency clock were powered down, the mode switch will be stalled until the high- frequency oscillator, any enabled PLL, and the low-frequency oscillator (if enabled) are producing stable clocks.

The activity of peripheral modules is controlled by their enable bits. Power consumption can be reduced in Active mode by selectively disabling modules and by executing the WAIT instruction. When the WAIT instruction is executed, the CPU stops executing new instructions until it receives an interrupt signal.

16.2 POWER SAVE MODE

In Power Save mode, Slow Clock is used as the HCLK Clock which drives the CPU and core bus modules. Power Save mode is intended for applications in which a low level of processing is required during low-power standby, for example if software needs to detect events for which no hardware wake-up signal is available.

If Slow Clock is driven by the 32.768 kHz oscillator and no on-chip module currently requires the 12-MHz Main Clock, software can disable the high-frequency oscillator to further reduce power consumption. The auxiliary clocks can be turned off under software control before switching to a reduced power mode, or they may remain active as long as they have an active clock source.

If a PLL Clock is not used to generate HCLK Clock or an auxiliary clock, the corresponding PLL can be powered down.

In Power Save mode, some modules are disabled or their operation is restricted. Other modules, including the CPU, continue to function normally, but operate at a reduced clock rate. See the module descriptions for details of each module's activity in Power Save mode.

16.3 IDLE MODE

In Idle mode, the HCLK Clock and PCLK Clock are disabled and therefore the clock is stopped to most modules of the device. Idle mode is intended for applications in which no processing is required during low-power standby, but the capability is needed to break out of the mode due to expiration of the watchdog timer. Idle mode can only be entered from Power Save mode.

The PLLs and the high-frequency oscillator may be disabled as controlled by register bits. The lowfrequency oscillator remains active. The Power Management Module (PMM) and the Timing and Watchdog Module (TWM) continue to operate from the Slow Clock. The auxiliary clocks can be turned off under software control before switching to a lowpower mode, or they remain active as long as they have an active clock source (Main Clock, PLL1 Clock, or PLL2 Clock, as selected by the PMMCKCTL.FCLKSRC bit).

16.4 HALT MODE

In Halt mode, all the device clocks, including the Main Clock, PLL1 Clock, PLL2 Clock, HCLK Clock, PCLK Clock, and Slow Clock, are disabled. Halt mode is intended for applications in which an external wake-up signal can be used to power-up the system through the RESET input or an MIWU input.

The high-frequency oscillator and PLLs are turned off. This is the only mode in which the low-frequency oscillator may be disabled, however its circuitry is optimized to guarantee lowest possible power consumption. This mode allows the device to reach the absolute minimum power consumption without losing its state (memory, registers, and so on).

16.5 SWITCHING BETWEEN POWER MODES

Switching from a higher to a lower power consumption mode is performed by writing an appropriate value to the Power Management Control Register (PMMSTCTL). Switching from a lower power consumption mode to the Active mode is usually triggered by a hardware event. Figure 16-1 shows the four power modes and the events that trigger a transition from one mode to another.

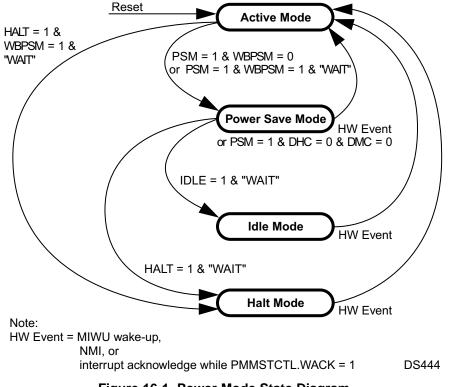


Figure 16-1. Power Mode State Diagram

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

Software changes the power mode in either of two ways, as controlled by the PMMSTCTL.WBPSM bit:

- Immediate transition (WBPSM = 0)—new clock sources take effect as soon as stable clocks are available. Only allowed when going from Active to Power Save mode.
- Transition at next WAIT instruction (WBPSM = 1)—device continues to operate in Active mode until it executes a WAIT instruction. At execution of the WAIT instruction, the device enters the new mode, and the CPU waits for the next interrupt event.

A transition to Idle or Halt mode must use the second method (WBPSM = 1).

Some of the power-up transitions are based on the occurrence of a wake-up event:

- Multi-Input Wake-Up Event—most general-purpose I/O port pins, certain peripheral pins (that don't share functionality with a GPIO port), and certain peripheral events can be programmed in the MIWU module to trigger a wake-up event.
- Non-Maskable Interrupt (NMI)—an NMI interrupt is a wake-up event.
- Interrupt Acknowledge Cycle—when the WACK bit in the PMMSTCTL register is set, any interrupt acknowledge cycle is a wake-up event.

Once a wake-up event is detected, it is latched until an interrupt acknowledge cycle or reset occurs.

A wake-up event causes a transition to the Active mode and restores normal clock operation, but does not start execution of the program. It is the interrupt handler associated with the wake-up source (MIWU, NMI, or any interrupt) that causes program execution to resume.

16.5.1 Active Mode to Power Save Mode

A transition from Active mode to Power Save mode is performed by writing a 1 to the PMMSTCTL.PSM bit. The transition to Power Save mode occurs immediately or at the execution of the next WAIT instruction, depending on the state of the PMMSTCTL.WBPSM bit. The PSM bit operates differently depending on this mode:

- WBPSM = 0—PSM bit reads as 1 after the transition to the Power Save mode occurs. If the high-frequency oscillator or PLLs are not producing a stable output, this transition may be stalled. In this mode, the PSM bit indicates when the transition has been completed.
- WBPSM = 1—PSM bit reads as 1 after it is written with 1, even before the WAIT instruction has executed and the transition to Power Save mode has occurred.

16.5.2 Entering Idle Mode

Idle mode can only be entered from Power Save mode. Idle mode is entered by writing 1 to the PMMSTCTL.IDLE bit and then executing a WAIT instruction.

16.5.3 Disabling the High-Frequency Clock

When the low-frequency oscillator is used to generate the Slow Clock, power consumption can be reduced further in the Power Save or Idle mode by disabling the high-frequency oscillator. This is accomplished by writing a 1 to the PMMSTCTL.DMC bit before executing the WAIT instruction that puts the device in the Power Save or Idle mode. The high-frequency clock is turned off only after the device enters the Power Save or Idle mode.

The CPU operates from Slow Clock in Power Save mode. It can turn off the high-frequency oscillator at any time by writing a 1 to the PMMSTCTL.DMC bit. The high-frequency oscillator is always enabled in Active mode and is always disabled in Halt mode, without regard to the PMMSTCTL.DMC bit.

Immediately after power-up and entry into Active mode, software must wait for the low-frequency oscillator to become stable before it can put the device in Power Save mode. It should monitor the PMMSR.SCLKSTB bit for this purpose. Once this bit is set, the low-frequency oscillator is stable and Power Save mode can be entered.

Slow Clock must come from the low-frequency oscillator or an external clock (driven on X2CKI), not derived from Main Clock, if the high-frequency oscillator will be disabled.

16.5.4 Entering Halt Mode

Halt mode can only be entered from the Active and Power Save modes. In Active mode, the PMMSTCTL.WBPSM bit must be set before entering Halt mode. Halt mode is entered by writing 1 to the PMMSTCTL.HALT bit and then executing a WAIT instruction.

16.5.5 Software-Controlled Transition to Active Mode

A transition from Power Save mode to Active mode can be accomplished by either a software method or a hardware wake-up event. The software method is to write a 0 to the PMMSTCTL.PSM bit. The value of the register bit changes only after the transition to the Active mode is completed.

If the high-frequency oscillator is disabled for Power Save operation, the oscillator must be enabled and allowed to stabilize before the transition to Active mode. To enable the high-frequency oscillator, clear the PMMSTCTL.DMC bit. Before clearing the PMMSTCTL.PSM bit, software must poll the PMMSR.MCLKSTB bit to determine when the oscillator has stabilized.

16.5.6 Wake-Up Transition to Active Mode

A hardware wake-up event switches the device directly from Power Save, Idle, or Halt mode to Active mode. When a wake-up event occurs, the on-chip hardware performs the following steps:

- 1. Clears the PMMSTCTL.DMC, PMMCSTCTL.DSC, and PMMPLLnCTL2.DPLLC bits, which enable the high-frequency oscillator, low-frequency oscillator, and PLL Clocks (if any were disabled).
- Waits for the PMMSR.MCLKSTB and PMMSR.SCLKSTB bits to become set. If either of the PLLs were enabled before entering the low-power mode, waits for the corresponding PMMPLLnCTL2.PLLCLKSTB bits to become set.
- 3. Switches the device into Active mode.

16.5.7 Power Mode Switching Protection

The Power Management Module has several mechanisms to protect the device from malfunctions caused by missing or unstable clock signals.

The PMMSR.MCLKSTB, PMMSR.SCLKSTB, and PMMPLLnCTL2.PLLCLKSTB bits indicate the current status of the high-frequency oscillator, low-frequency oscillator, and PLLs, respectively. Software can check the appropriate bit before switching to a power mode that requires a specific clock. A set bit indicates an operating, stable clock. A clear bit indicates a clock that is disabled, not available, or not yet stable.

During a power mode transition, if there is a request to switch to a mode which uses a clock with a clear stability bit, the switch is delayed until the bit is set by the hardware.

When the system is built without an external crystal network for the low-frequency clock, Main Clock or a PLL Clock is divided by a prescaler to produce the low-frequency clock. In this situation, Main Clock is disabled only in the Halt mode, and cannot be disabled for the Power Save or Idle mode.

Following reset, Main Clock drives Slow Clock through a prescaler. The prescaler value results in a Slow Clock rate of 32.786.885 Hz.

Note: For correct operation in the absence of a low-frequency crystal, the X2CKI pin must be tied low (not left floating) so that the hardware can detect the absence of the crystal.

16.6 POWER MANAGEMENT REGISTER

Table 16-3 shows the power management register.

Table 16-3. Power Management Register

Name	Address	Description
PMMSTCTL	FF A404h	Power Management State Control Register

16.6.1 Power Management State Control Register (PMMSTCTL)

The PMMSTCTL register is a byte-wide, read/write register that controls the operating power mode (Active, Power Save, Idle, or Halt) and enables or disables the high-frequency oscillator in the Power Save and Idle modes. At reset, the register are cleared. The format of the register is shown below. At reset, the register is cleared.

7	6	5	4	3	2	1	0
DSC	WACK	Res.	DMC	WBPSM	HALT	IDLE	PSM
PSM	When the Power Save causes the device to st Power Save mode is de mode is complete. The is detected.	art the switch to F elayed until execu PSM bit can be c	Power Save mode	. If the WBPSM bi struction. The PSN	t is set when the I I bit becomes set	PSM bit is written after the switch t	with 1, entry into o Power Save
	0 – Device is not in Pov	wer Save mode.		1	 Device is in Pov 	wer Save mode.	
IDLE	The Idle Mode bit indic Save mode, writing 1 to bit is written with 1, ent software. It is also clea bit.	o the IDLE bit cau ry into Idle mode	ses the device to is delayed until ex	start the switch to ecution of a WAIT	IDLE mode. If the instruction. The	WBPSM bit is s DLE bit can be s	et when the IDLE et and cleared by
	0 – Device is not in Idle	e mode.		1	 Device is in Idle 	e mode.	
HALT	The Halt Mode bit indic mode, writing 1 to the H written with 1, entry into Clock and then turns of by setting the PMMSTO up event. When this sig hardware. When set, tt 0 – Device is not in Halt 1 – Device is in Halt mode	HALT bit causes to be Halt mode is de ff the highfrequen CTL.DSC bit. The gnal is set high, th he HALT bit overri It mode.	he device to start layed until executi cy oscillator and F HALT bit can be e oscillator is star	the switch to Halt ion of a WAIT instr PLLs. The low-freq set and cleared by ted. After the osci	mode. If the WBP ruction. When in H uency oscillator a software. Halt me	SM bit is set whe falt mode, the PM lso may be stopp ode is exited by a	en the HALT bit is MM stops HCLK ved in Halt mode a hardware wake-
WBPSM	When the Wait Before PSM bit. When the WB PSM, IDLE, or HALT b frequency oscillator or is entered. 0 – Mode transitions m 1 – Mode transitions ar	PSM bit is set, a it, respectively, ar PLLs may be disa ay occur immedia	switch from Active ad then executing abled only after a v tely.	e mode to Power S a WAIT instructior WAIT instruction is	Save, Idle, or Halt n. Also, if the DMC s executed and the	mode is performed or DPLLC bits a	ed by setting the are set, the high-
DMC	The Disable Main Cloc In Active mode, Main C the DMC value. Disabli wake-up event is detec 0 – Main Clock is only 1 – Main Clock is also	Clock is enabled w ng Main Clock wil ted. disabled in Halt m	rithout regard to th I also disable the node.	e DMC value. In H PLL Clocks. The I	Halt mode, Main C DMC bit is cleared	Clock is disabled I by hardware wh	without regard to en a hardware
WACK	The Wake-Up on Interr acknowledge occurs. T used to power up the s acknowledge will not ca 0 – Interrupt acknowled 1 – Interrupt acknowled	upt Acknowledge his could be used ystem quickly, rat ause a wake up fr lge does not wake	bit is set to enabl I in Power Save m her than needing om a low power m e up from low-pow	e a mode in which node without using the software to do node. ver mode.	the system will w the WAIT instruc	ake up when an tion, so that an ir	interrupt iterrupt could be
DSC	The Disable Slow Cloc maximum power saving it. Leaving the oscillato hardware wake-up eve 0 – Low-frequency osci 1 – Low-frequency osci	gs, but the low-fre r running avoids a nt occurs. illator is not disab	quency oscillator a start-up delay fo led.	is optimized for ve r the low-frequenc	ry low power so it	may not be nece	essary to disable

www.ti.com

17 MULTI-INPUT WAKE-UP

The Multi-Input Wake-Up (MIWU) module allows most general- purpose I/O port pins, certain peripheral pins (that do not share functionality with a GPIO port), and certain peripheral events to break the system out of a low-power mode and return to Active mode. Each MIWU input can be programmed to assert a wake-up signal for exiting from a lowpower mode, and each input can be independently programmed to assert an interrupt request on any of eight maskable interrupts assigned to the MIWU module.

Eight types of registers control the generation of interrupts and wake-up events, and one register indicates the status of pending interrupt requests:

- WKRPNDx—two 32-bit registers indicate which MIWU inputs have detected rising edges since they were last cleared (either by reset or writing to WKCLRx).
- WKFPNDx—two 32-bit registers indicate which MIWU inputs have detected falling edges since they were last cleared (either by reset or writing to WKCLRx).
- WKCLRx—writing 1 to bits in either of these two 32-bit registers clears the corresponding bits in the WKRPNDx and WKFPNDx registers. The WKCLRx registers are write-only.
- WKRENx—two 32-bit registers hold bits for enabling a wake-up event when a rising edge is detected on the corresponding MIWU input.
- WKFENx—two 32-bit registers hold bits for enabling a wake-up event when a falling edge is detected on the corresponding MIWU input.
- WKREINx—two 32-bit registers hold bits for enabling an interrupt when a rising edge is detected on the corresponding MIWU input.
- WKFEINx—two 32-bit registers hold bits for enabling an interrupt when a falling edge is detected on the corresponding MIWU input.
- WKICTLx—four 32-bit registers provide two-bit fields to select one of four MIWU interrupt channels available when an enabled interrupt occurs. MIWU inputs 31:0 can only assert MIWU interrupts 3:0, while MIWU inputs 63:32 can only assert MIWU interrupts 7:4.
- WKISTAT—indicates pending MIWU interrupts.

The MIWU module is always active, including in Halt mode when all device clocks are stopped. Therefore, detecting an external trigger condition and setting bits in WKRPNDx and WKFPNDx do not require an active HCLK Clock or PCLK Clock.

Texas Instruments

www.ti.com

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

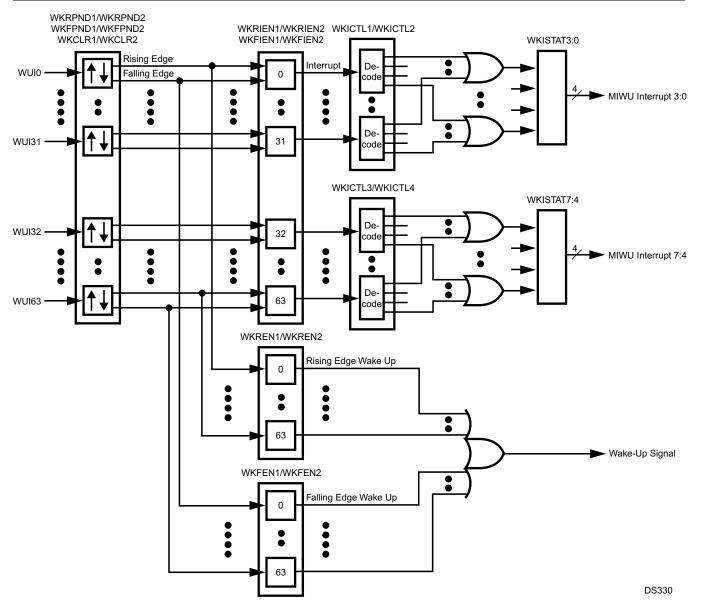


Figure 17-1. Multi-Input Wake-Up Module Block Diagram

Table 17-1 lists the sources connected to the MIWU inputs. A source which is a GPIO port pin cannot be used unless it is enabled for use as an input, either by enabling an alternate function in which the pin is used as an input or by setting its corresponding bit in a PxIEN register. If this is not done, the input logic for the pin is disabled.

MIWU Channel	Source
WUI0	PE0
WUI1	PE1
WUI2	PE2
WUI3	PE3
WUI4	PE4
WUI5	PE5
WUI6	PE6
WUI7	PE7
WUI8	PE8
WUI9	PE9
WUI10	PE10
WUI11	PE11
WUI12	PE12
WUI13	PE13
WUI14	PE14
WUI15	PE15
WUI16	PG0
WUI17	PG1
WUI18	PG2
WUI19	PG3
WUI20	Reserved
WUI21	Reserved
WUI22	Reserved
WUI23	Reserved
WUI24	Reserved
WUI25	Reserved
WUI26	Reserved
WUI27	Reserved
WUI28	Reserved
WUI29	Reserved
WUI30	PG14
WUI31	PG15
WUI32	PF0
WUI33	PF1
WUI34	PF2
WUI35	PF3
WUI36	Reserved
WUI37	Reserved
WUI38	Reserved
WUI39	Reserved
WUI40	PF8
WUI41	PF9
WUI42	Reserved
VVUI42	

Table 17-1. MIWU Sources

Copyright © 2007–2013, Texas Instruments Incorporated

www.ti.com

STRUMENTS

TEXAS

Table 17-1. Miwo Sources (continued)			
Reserved			
PF12			
PF13			
Reserved			
Reserved			
Reserved			
PH1			
Reserved			
Reserved			
ACCESS.bus			
A/D Converter			
Reserved			
Reserved			
USB			
Reserved			
Reserved			
Reserved			
TWM TOOUT			
RTC RTCEVT3			
RTC RTCEVT2			
RTC RTCEVT1			

Table 17-1. MIWU Sources (continued)

17.1 MULTI-INPUT WAKE-UP REGISTERS

Table 17-2 lists the MIWU registers.

Table 17-2. Multi-Input Wake-Up Registers

Name	Address	Description
WKRPND1	FF C020h	Rising Edge Pending Register 1
WKRPND2	FF C024h	Rising Edge Pending Register 2
WKFPND1	FF C030h	Falling Edge Pending Register 1
WKFPND2	FF C034h	Falling Edge Pending Register 2
WKCLR1	FF C040h	Clear Pending Register 1
WKCLR2	FF C044h	Clear Pending Register 2
WKREN1	FF C000h	Rising Edge Enable Register 1
WKREN2	FF C004h	Rising Edge Enable Register 2
WKFEN1	FF C010h	Falling Edge Enable Register 1
WKFEN2	FF C014h	Falling Edge Enable Register 2
WKRIEN1	FF C050h	Rising Edge Interrupt Enable Register 1
WKRIEN2	FF C054h	Rising Edge Interrupt Enable Register 2
WKFIEN1	FF C060h	Falling Edge Interrupt Enable Register 1
WKFIEN2	FF C064h	Falling Edge Interrupt Enable Register 2
WKICTL1	FF C070h	Interrupt Control Register 1
WKICTL2	FF C074h	Interrupt Control Register 2
WKICTL3	FF C078h	Interrupt Control Register 3
WKICTL4	FF C07Ch	Interrupt Control Register 4
WKISTAT	FF C090h	Interrupt Status Register

17.1.1 Rising Edge Pending Register n (WKRPNDn)

The WKRPNDn registers are 32-bit, read/write registers that indicate whether a rising edge has been detected on the corresponding MIWU input. Bits 31:0 of WKRPND1 cor- respond to MIWU inputs 31:0 Bits 31:0 of WKRPND2 correspond to MIWU inputs 63:32. Writing 1 to bits in the WKCLRn registers clears the corresponding bits in the WKRPNDn registers. The WKRPNDn registers are cleared at reset. The register format is shown below.

31	0
	WKRPD
WKRPD	The Wake-Up Rising Edge Pending bits indicate whether a rising edge has occurred on the corresponding MIWU inputs since the bits were last cleared.

0 – No rising edge occurred.1 – Rising edge occurred.

i – Rising edge occurred.

17.1.2 Falling Edge Pending Register n (WKFPNDn)

The WKFPNDn registers are 32-bit, read/write registers that indicate whether a falling edge has been detected on the corresponding MIWU input. Bits 31:0 of WKFPND1 correspond to MIWU inputs 31:0 Bits 31:0 of WKFPND2 correspond to MIWU inputs 63:32. Writing 1 to bits in the WKCLRn registers clears the corresponding bits in the WKFPNDn registers. The WKFPNDn registers are cleared at reset. The register format is shown below.

31	0
	WKFPD
WKFPD	The Wake-Up Falling Edge Pending bits indicate whether a falling edge has occurred on the corresponding MIWU inputs since the bits were last cleared. 0 – No falling edge occurred.

1 - Falling edge occurred.

17.1.3 Clear Pending Register n (WKCLRn)

The WKCLRn registers are 32-bit, write-only registers that clear bits in the WKRPNDn and WKFPNDn registers. Writing 1 to a WKCLRn bit clears the corresponding bit in each of the other registers. WKCLR1 clears bits in WKRPND1 and WKFPND1, and WKCLR2 clears bits in WKRPND2 and WKFPND2. The register format is shown below.

31		0
	WKCL	
WKCL	The Wake-Up Clear bits are used to selectively clear bits in WKRPNDn and WKFPNDn. 0 – Writing 0 has no effect.	

1 - Writing 1 clears the corresponding bit position in WKRPNDn and WKFPNDn.

17.1.4 Rising Edge Enable Register n (WKRENn)

The WKRENn registers are 32-bit, read/write registers that enable a wake-up event when a rising edge is detected on the corresponding MIWU input. Bits 31:0 of WKREN1 correspond to MIWU inputs 31:0 Bits 31:0 of WKREN2 correspond to MIWU inputs 63:32. The WKRENn registers are cleared at reset. The register format is shown below.

31	0
	WKREN
WKREN	The Wake-Up Rising Edge Enable bits enable a wake-up event when a rising edge occurs on the corresponding MIWU input. 0 – No wake-up event enabled. 1 – Wake-up event enabled.

17.1.5 Falling Edge Enable Register n (WKFENn)

The WKFENn registers are 32-bit, read/write registers that enable a wake-up event when a falling edge is detected on the corresponding MIWU input. Bits 31:0 of WKFEN1 correspond to MIWU inputs 31:0 Bits 31:0 of WKFEN2 correspond to MIWU inputs 63:32. The WKFENn registers are cleared at reset. The register format is shown below.

31	0
	WKFEN
WKFEN	The Wake-Up Falling Edge Enable bits enable a wake-up event when a falling edge occurs on the corresponding MIWU

input. 0 – No wake-up event enabled.

1 – Wake-up event enabled.

17.1.6 Rising Edge Interrupt Enable Register n (WKRIENn)

The WKRIENn registers are 32-bit, read/write registers that enable an interrupt when a rising edge is detected on the corresponding MIWU input. Bits 31:0 of WKRIEN1 correspond to MIWU inputs 31:0 Bits 31:0 of WKRIEN2 correspond to MIWU inputs 63:32. The WKRIENn registers are cleared at reset. The register format is shown below.

31	0
	WKRIEN
WKRIEN	The Rising Edge Interrupt Enable bits enable an interrupt when a rising edge occurs on the corresponding MIWU input. 0 – No interrupt enabled.

1 – Interrupt enabled.

17.1.7 Falling Edge Interrupt Enable Register n (WKFIENn)

The WKFIENn registers are 32-bit registers, read/write that enable an interrupt when a falling edge is detected on the corresponding MIWU input. Bits 31:0 of WKFIEN1 correspond to MIWU inputs 31:0 Bits 31:0 of WKFIEN2 correspond to MIWU inputs 63:32. The WKFIENn registers are cleared at reset. The register format is shown below.

31	0
	WKFIEN
WKFIEN	The Falling Edge Interrupt Enable bits enable an interrupt when a falling edge occurs on the corresponding MIWU input. 0 – No interrupt enabled. 1 – Interrupt enabled.

17.1.8 Interrupt Control Register n (WKICTLn)

The WKICTLn registers are 32-bit, read/write registers that provide 2-bit fields which select the MIWU interrupt channels used by the associated MIWU channels. Each MIWU input can only activate one of four interrupt channels. MIWU inputs 31:0 can only activate MIWU interrupt channels 3:0, and MIWU inputs 63:32 can only activate MIWU interrupt channels 7:4.

The WKICTL1 register selects interrupts for MIWU inputs 15:0, WKICTL2 selects interrupts for MIWU inputs 31:16, WKICTL3 selects interrupts for inputs 47:32, and WKICTL4 selects interrupts for inputs 63:48. At reset, the WKICTLn registers are cleared. The register format of WKICTL1 is shown below (the other registers have a similar format).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WKI	NTR7	WKI	NTR6	WKI	NTR5	WKI	NTR4	WKI	NTR3	WKI	NTR2	WKI	NTR1	WKN	ITR0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WKIN	TR15	WKIN	TR14	WKIN	ITR13	WKIN	ITR12	WKIN	ITR11	WKIN	ITR10	WKI	NTR9	WKI	NTR8

WKINTR The Interrupt Request fields select which of four available MIWU interrupt channels are activated for the corresponding MIWU input.

00 - Selects MIWU interrupt channel 0 or 4.

10 – Selects MIWU interrupt channel 2 or 6.

01 - Selects MIWU interrupt channel 1 or 5.

11 – Selects MIWU interrupt channel 3 or 7.

17.1.9 Interrupt Status Register (WKISTAT)

The WKISTAT register is a 32-bit read-only register that indicates the status of the 8 MIWU interrupt channels. No interrupt channels are active following reset. The register format is shown below.

31		8	7	0	
	Reserved		WKIST		
			-		

WKIST The Interrupt Status bits indicate which MIWU interrupt channels are currently asserting an interrupt request.
 0 - No interrupt request is being asserted.
 1 - An interrupt request is being asserted.

18 INPUT/OUTPUT PORTS

The CP3CN37 has 31 software-configurable general-purpose I/O pins, organized into four ports, named Port E, Port F, Port G, and Port H. All pins have independently programmable MIWU channels, which give them the capability to interrupt the CPU and wake up the system from low-power modes.

In addition to their general-purpose I/O function, all of the pins have alternate functions for use with onchip peripheral modules such as the UARTs and timers. Architecturally, there may be two alternate functions for a port pin, and software must specify which function to select (A or B), even when only one function is implemented. The alternate functions of all I/O pins are shown in Table 18-1. To avoid glitches, software should first select the alternate function, then enable the alternate function, and finally initialize the module which uses the alternate function.

The I/O pin characteristics are fully programmable. Each pin can be configured to operate as a TRI-STATE output, push-pull output, input with weak pullup, input with weak pull-down, or high-impedance input. Different pins within the same port can be individually configured to operate in different modes.

Section 25.12.10 shows the I/O port pin logic. The register bits, multiplexers, and buffers allow the port pin to be configured into the various operating modes.

To reduce power consumption, input buffers configured for general-purpose I/O are only enabled when they are read. When configured for an alternate function, the input buffers are enabled continuously. To minimize power consumption, input signals to enabled buffers must be held within 0.2 volts of the VCC or GND voltage.

The electrical characteristics and drive capabilities of the input and output buffers are described in I/O Port Pin Logic.

CP3CN37

www.ti.com

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

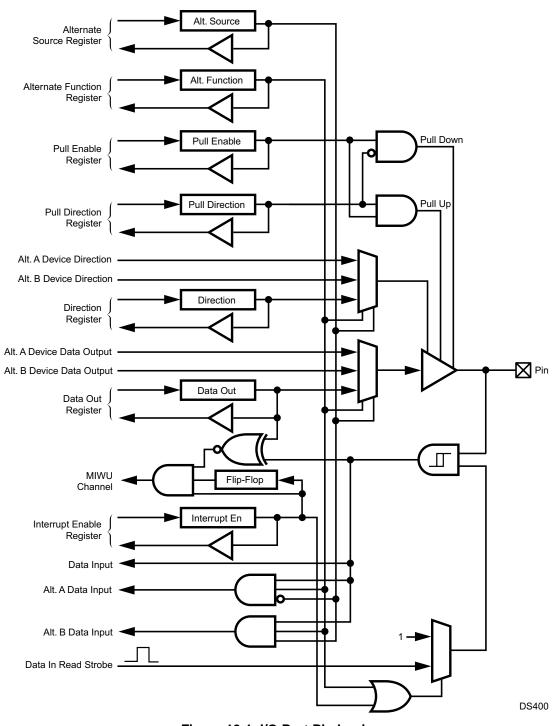


Figure 18-1. I/O Port Pin Logic

www.ti.com

18.1 OPEN-DRAIN OPERATION

A port pin can be configured to operate as an inverting open-drain output buffer. To do this, software must clear the bit in the PxDOUT register and use the PxDIR bit to set the value of the port pin. In open-drain operation, the output buffer is toggled between driving logic low and TRI-STATE (high-impedance mode). This is achieved by using the PxDIR register to switch between driving a low output and configuring the port pin as an input. If desired, the internal weak pullup or pulldown can be enabled to pull the signal to a harmless state when the output buffer is in TRI-STATE mode.

18.2 PORT REGISTERS

Each port has a set of memory-mapped registers:

- PxDIR—specifies whether the port is an input or output, except when using an alternate function. When an alternate function is used, peripheral controls port direction.
- PxDIN—indicates the states on the port pins.
- PxDOUT—holds data driven on the port pins, when the port is configured as an output and no alternate function is used. When an alternate function is used, the peripheral device controls the data output. This register also specifies states which cause assertion of interrupts, when interrupts are enabled (see Section 18.2.4).
- PxIEN—enables an interrupt when the state on the port pin matches the state in PxDOUT register.
- PxALT—enables the port alternate function.
- PxALTS—selects between alternate functions (A and B).
- PxWPU—enables a weak pullup or pulldown.
- PxPDR—selects the pullup/pulldown direction.

Name	Address	Description
PEDIR	FF C404h	Port E Direction Register
PEDIN	FF C408h	Port E Data Input Register
PEDOUT	FF C40Ch	Port E Data Output Register
PEIEN	FF C41Ch	Port E Interrupt Enable Register
PEALT	FF C400h	Port E Alternate Function Register
PEALTS	FF C418h	Port E Alternate Function Source Register
PEWPU	FF C410h	Port E Weak Pullup/Pulldown Enable Register
PEPDR	FF C420h	Port E Weak Pullup/Pulldown Direction Register
PFDIR	FF C804h	Port F Direction Register
PFDIN	FF C808h	Port F Data Input Register
PFDOUT	FF C80Ch	Port F Data Output Register
PFIEN	FF C81Ch	Port F Interrupt Enable Register
PFALT	FF C800h	Port F AlternateFunction Register
PFALTS	FF C818h	Port F AlternateFunction Source Register
PFWPU	FF C810h	Port F Weak Pullup/Pulldown Enable Register
PFPDR	FF C820h	Port F Weak Pullup/Pulldown Direction Register
PGDIR	FF 6404h	Port G Direction Register
PGDIN	FF 6408h	Port G Data Input Register
PGDOUT	FF 640Ch	Port G Data Output Register
PGIEN	FF 641Ch	Port G Interrupt Enable Register
PGALT	FF 6400h	Port G AlternateFunction Register
PGALTS	FF 6418h	Port G AlternateFunction Source Register
PGWPU	FF 6410h	Port G Weak Pullup/Pulldown Enable Register
PGPDR	FF 6420h	Port G Weak Pullup/Pulldown Direction Register

Table 18-1. Port Registers

www.ti.com

STRUMENTS

PHDIR	FF CC04h	Port H Direction Register
PHDIN	FF CC08h	Port H Data Input Register
PHDOUT	FF CC0Ch	Port H Data Output Register
PHIEN	FF CC1Ch	Port H Interrupt Enable Register
PHALT	FF CC00h	Port H AlternateFunction Register
PHALTS	FF CC18h	Port H AlternateFunction Source Register
PHWPU	FF CC10h	Port H Weak Pullup/Pulldown Enable Register
PHPDR	FF CC20h	Port H Weak Pullup/Pulldown Direction Register

In the descriptions of the port registers, the lowercase letter "x" represents the port designation, either E, F, G, or H. For example, "PxDIR register" means any one of the port direction registers: PEDIR, PFDIR, PGDIR, or PHDIR.

All of the port registers are 16-bit read/write registers, except for the port data input registers, which are read-only registers. Each register bit controls the function of the corresponding port pin. For example, PGDIR.2 (bit 2 of the PGDIR register) controls the direction of port pin PG2.

18.2.1 Port Direction Register (PxDIR)

The PxDIR register selects whether the corresponding port pin is used for input or output. A reset operation clears the port direction registers, which initializes the pins as inputs.

15		0
	PxDIR	
PxDIR	The Port Direction bits select the direction of the corresponding port pin. 0 – Input. 1 – Output.	

18.2.2 Port Data Input Register (PxDIN)

The PxDIN register is a read-only register that returns the current state on each port pin. The CPU can read this register at any time, even when the pin is configured as an output.

15		0
	PxDIN	
PxDIN	The Port Data In bits indicate the state on the corresponding port pin. 0 – Pin is low. 1 – Pin is high.	

18.2.3 Port Data Output Register (PxDOUT)

The PxDOUT register holds the data to be driven on output port pins. When the pins are configured as outputs and no alternate function is enabled, writing to this register changes the output value. Reading the register returns the last value written to the register.

When an interrupt is enabled through the PxIEN register, the PxDOUT register specifies the signal level which asserts the interrupt.

A warm reset (software reset or watchdog reset) leaves the register contents unchanged. At power-up, the PxDOUT registers contain undefined data.

15			0
		PxDOUT	
PxDOUT		driven on pins configured as outputs in general-purpose I/O mode. When r, the PxDOUT bits specify the signal levels which assert interrupts.	
	0 – Drive output pin low.	1 – Drive output pin high.	

18.2.4 Port Interrupt Enable Register (PxIEN)

The PxIEN registers enable the port input logic so that the corresponding pins can be used as wake-up inputs to the MIWU. All 16 pins on Ports E, F, and G and three pins on 8-bit Port H have independently programmable MIWU channels, which give them the capability to interrupt the CPU and wake up the system from low-power modes. If an alternate function is enabled which uses a pin as an input, the port input logic is already enabled, so it is not required to set the corresponding bit in its PxIEN register. The PxDOUT register specifies the signal level which asserts the wake-up signal to the MIWU. At reset, the register is cleared to 0000h.

15	C)
	PxIEN	

PxIEN

0 – Interrupt disabled.1 – Interrupt enabled.

18.2.5 Port Alternate Function Register (PxALT)

The PxALT registers control whether the port pins are used for general-purpose I/O or for their alternate function. Each port pin can be controlled independently.

The Port Interrupt Enable bits enable the port input logic so that the corresponding port pins can be used as MIWU inputs.

A clear bit in the alternate function register causes the corresponding pin to be used for general-purpose I/O. In this configuration, the port pin output buffer is controlled by the direction register (PxDIR) and the data output register (PxDOUT). The input buffer is visible to software as the data input register (PxDIN).

A set bit in the alternate function register (PxALT) causes the corresponding pin to be used for its peripheral I/O function. When the alternate function is selected, the port direction and output data are controlled by the peripheral device.

A reset clears the port alternate function registers, which initializes the pins as general-purpose I/O ports.

15	C)
	PxALT	
PxALT	The Port Alternate Function bits control whether the corresponding port pins are general-purpose I/O ports or are used their alternate function by an on-chip peripheral. 0 – General-purpose I/O selected. 1 – Alternate function selected.	in

www.ti.com

18.2.6 Port Alternate Function Select Register (PxALTS)

The PxALTS register selects between two peripheral devices available for the alternate function of a port pin. These bits are ignored unless the corresponding PxALT bits are set. Each port pin can be controlled independently.

15	0	
	PxALTS	
PxALTS	The Alternate Function Select bits select among two alternate functions. Table 18-2 shows the mapping of the PxALTS	

The Alternate Function Select bits select among two alternate functions. Table 18-2 shows the mapping of the PxALTS bits to the alternate functions. Unused PxALTS bits must be clear.

Port Pin	PxALTS = 0 (Device A)	PxALTS = 1 (Device B)
PE0	USART0 RXD0	TIO0_1
PE1	USART0 TXD0	Reserved
PE2	USART0 RTS0	TIO0_3
PE3	USART0 CTS0	Reserved
PE4	USART0 CKX0	TIO0_2
PE5	TA0	NMI
PE6	CANRX	Reserved
PE7	CANTX	SRFS
PE8	MSK	Reserved
PE9	MDIDO	Reserved
PE10	MDODI	Reserved
PE11	MWCS	TIO0_7
PE12	SCL	TIO0_5
PE13	IDPULLUP	TIO1_1
PE14	DRVVBUS	TIO1_3
PE15	IDDIG	TIO1_5
PF0	Reserved	Reserved
PF1	Reserved	USART1 RTS1
PF2	Reserved	USART1 CTS1
PF3	Reserved	USART1 CKX1
PF8	USART1 RXD1	TIO0_4
PF9	USART1 TXD1	Reserved
PF12	UART2 RXD2	TIO0_8
PF13	UART2 TXD2	Reserved
PG0	I2SCLK	SCK
PG1	I2SWS	SFS
PG2	I2SSDI	SRD
PG3	I2SSDO	STD
PG14	UART3 RXD3	TB1
PG15	UART3 TXD3	SRCLK
PH1	SDA	TIO1_6

Table 18-2. Alternate Function Select

15

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

Texas Instruments

0

18.2.7 Port Weak Pullup/Pulldown Enable Register (PxWPU)

The PxWPU register controls whether a weak pullup or pulldown device is enabled on the output buffer. The pullup or pulldown device, if enabled by the register bit, operates whenever the port output buffer is disabled (TRI-STATE mode). Enabling the pullup or pulldown device is unaffected by whether the port pin is in GPIO or alternate function mode. A reset operation clears the PxWPU registers, which disables all pullups and pulldowns.

		•
	PxWPU	
PxWPU	The Weak Pullup/Pulldown Enable bits control whether the weak pullup/pulldown device is enabled. 0 – Weak pullup/pulldown disabled.	

1 – Weak pullup/pulldown enabled.

18.2.8 Port Weak Pullup/Pulldown Direction Register (PxPDR)

The PxPDR register selects whether a weak pullup or pulldown device is enabled on the output buffer. The pullup or pulldown device, if enabled in the PxWPU register, operates whenever the port output buffer is disabled (TRI-STATE mode). The PxPDR bits are ignored unless the corresponding PxWPU bits are set. At reset, the registers are initialized to FFFFh, which selects pullups.

15		0
	PxPDR	
PxPDR	The Pullup/Pulldown Direction bits select between a pullup and a pulldown device. 0 – Pulldown selected.	

1 – Pullup selected.

19 TELEMATICS CODEC

The telematics codec provides dual input channels for voice recognition, telematics, voice-over-IP (VoIP), and Bluetooth applications, and it provides high-quality stereo output for music playback and voice DAC functions.

The ADC has these features:

- Two differential or single-ended analog microphone input
- Two digital microphone interfaces
- Programmable microphone gain and muting
- SNR of 70 dB for ADC path
- Fixed 125x oversampling rate
- 8 kHz to 24 kHz
- Selectable choice of high-pass filters

The stereo DAC has these features:

- >85 dB SNR
- Selectable mono and stereo modes
- Exact sample rates of 8, 12, 16, 24, and 48 kHz derived from 12-MHz clock
- Exact sample rates of 22.05, 24, 32, 44.1, 48, 88.2, 96, 176.4, and 192 kHz from on-chip PLL
- 125x oversampling rate mode using 2, 3, 4, 6, or 12 MHz clock
- 128× oversampling rate mode
- 64x and 32x oversampling rate modes for high-quality 96/192 kHz audio
- On-chip fully differential signaling for analog circuitry to ensure high PSRR and low crosstalk
- Mute and low-power modes on outputs
- Programmable sidetone from ADC
- Click and pop reduction and DC protection circuits
- Zero-crossing detection for mode changing
- Power-management sequencer to protect external components (such as speakers) from power fluctuations
- Programmable 5-tap FIR filter for tone control and compensation

Texas

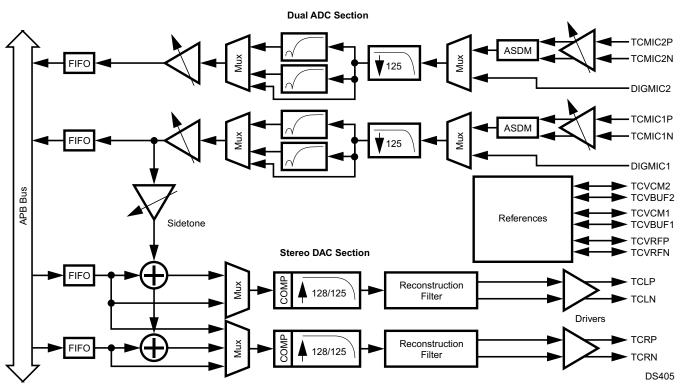


Figure 19-1. Telematics Codex

19.1 CODEC ADC

The ADCs are designed for operation at 8 or 16 kHz and meet all typical specifications at this level. They can be used at sample rates up to 24 kHz by increasing the input clock from 1 MHz up to 3 MHz.

The ADCs are 125x-oversampled, second-order, analog sigma-delta modulator (ASDM) designed specifically for audio applications. They use IIR filters to obtain large stopband attenuations. The frequency response matches that used for Bluetooth and GSM at 8 kHz, and it is suitable for G.722 applications at 16 kHz. The ADCs have selectable high-pass filters to support pop/wind rejection at higher sampling rates. The clock should be set as shown in Table 19-1.

Oversampling Rate	Sampling Frequency (kHz)	Codec ADC Clock Frequency (MHz)
125	8	1.0
125	12	1.5
125	16	2.0
125	24	3.0

19.2 CODEC DAC

The stereo DAC operates in one of four oversampling modes (32x, 64x, 125x, or 128x), as selected in the DACOSR field of the TCDCBASIC register. This allows a 12- MHz clock for 8, 16, 24, or 48 kHz audio or an external clock for any other sampling rate up to 192 kHz as shown in Table 19-2:

DACOSR Field	Oversampling Rate	Sampling Frequency (kHz)	Codec DAC Clock Frequency (MHz)
00	125	8	2
00	125	12	3
00	125	16	4
00	125	24	6
00	125	32	8
00	125	48	12
01	128	22.05	5.6448
01	128	32	8.192
01	128	44.1	11.2896
01	128	48	12.288
10	64	88.2	11.2896
10	64	96	12.288
11	32	176.4	22.5792
11	32	192	24.576

Table 19-2	. Codec	DAC	Clock	Frequency
------------	---------	-----	-------	-----------

The codec stereo DAC is a CD-quality third-order "bit- stream" DAC similar to those found on most commercial CD players. The stop band attenuation is greater than 76 dB and system pass-band ripple can be kept to within 0.01 dB. Typical SNRs are 85dB without a weighting filter.

To meet the requirements of typical automotive telematics applications, the analog signal path is fully differential. For best audio performance, the DAC should operate synchronously to the CPU.

19.3 COMPENSATION FILTER

To allow compensation of roll-off in the DAC and analog filter sections, an FIR compensation filter is applied to the input data at the original sample rate. The filter can also be used for precise digital gain and simple tone controls, although a DSP or CPU should be used if more powerful tone control is required. Figure 19-2 shows the filter stages.

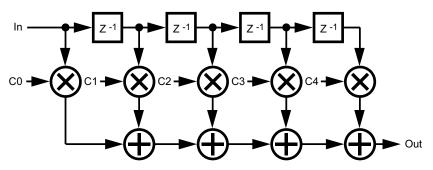


Figure 19-2. Compensation FIR Filter

By default, the filter applies about 2 dB of compensation at 20 kHz. 5 taps is sufficient to allow passband equalization and ripple cancellation to around \pm 0.01 dB.

Because the filter must always be phase linear, the coefficients are symmetrical. Coefficients C0, C1, and C2 are programmable, C3 is equal to C1, and C4 is equal to C0. The maximum power of this filter must not exceed that of the examples given in Table 19-3.

Sampling Freq. (kHz)	Over- sampling Rate	C0	C1	C2	C3	C4
48	125	343	-2291	26984	-2291	343
48	128	61	-371	25699	-371	61

Table 19-3. Default Filter Coefficients

19.4 RECONSTRUCTION FILTER

The output of the stereo DAC is passed through low-pass reconstruction filters to remove quantization noise (the "sigma-delta tail"). Because the DAC is optimized for high-quality audio (44.1 kHz or higher sample rate), the cutoff frequency of the filter is placed at 24 kHz.

At low sample rates (for example, 8 kHz), quantization noise will appear below this cutoff frequency. If the application requires this noise to be removed, several solutions are possible. For example, low-pass filters may be added to the DAC outputs. Even simple RC filters will provide substantial noise reduction. Audio devices intended for voice (such as headsets) often provide an effective filter because of their limited bandwidth.

In software, digital interpolation may be used to upsample the data for a higher sample rate. This solution requires no additional hardware, but it consumes more CPU bandwidth and adds delay to the audio path.

19.5 PERIPHERAL BUS INTERFACE

The codec is a slave device on the peripheral APB bus. As shown in Figure 19-1, the codec interface has four FIFOs, two read FIFOs for the two ADC channels and two write FIFOs for the stereo DAC channels. Four independent DMA requests are available corresponding to the four channels. One interrupt request (IRQ28) is available for triggering by any channel.

19.5.1 FIFOs

The ADC and DAC trigger depths are controlled independently to support differing sampling rates. The full depth of the FIFOs does not need not be used, and a lesser depth may be used to reduce latency. Each ADC FIFO is automatically flushed when its ADC is disabled. Both DAC FIFOs are automatically flushed when the stereo DAC is disabled.

When the DAC is muted, the DAC FIFOs should be flushed before the DAC is unmuted. The ADC FIFOs should be flushed before the ADCs are unmuted to clear any old samples, or the codec can be placed in reset using the Soft Reset bit (SFTRST bit in the TCDCDEBUG register). This can be used to start the codec from a known state.

19.5.2 Interrupts

Interrupt requests on IRQ28 can be generated from several sources, such as FIFO overrun/underrun, power-cycle events, and audio signal zero-crossings and clipping events (useful for changes to the audio stream). The interrupt enable register (TCDCIRQEN) and FIFO trigger control register (TCDCFIFO) are used to enable events which assert interrupt requests. The pending/clear register (TCDCIRQPNDCLR) indicates which events have occurred. Writing 1 to a bit in the TCDCIRQPNDCLR register clears the event.

www.ti.com

19.5.3 DMA

A DMA request or interrupt request may be enabled when a FIFO reaches its trigger level. Low trigger levels are recommended for triggering DMA requests, to reduce unnecessary latency. DMA requests and IRQ28 interrupt requests are mutually exclusive, however interrupt requests IRQ49, IRQ48, IRQ47, and IRQ46 may be enabled for DMA requests on channels 10, 11, 12, and 13, respectively.

If a DMA request is disabled while it is asserted, the request will remain asserted, which blocks lowerpriority requests to the DMA controller. To avoid this situation, software can either check that the DMA request is not asserted before disabling the request, or it can disable the request in the DMA controller.

19.6 FREEZE MODE

When Freeze mode is entered, the codec will exhibit the following behavior:

- The contents of the ADC and DAC FIFOs and the FIFO output data do not change.
- The DAC outputs are muted.

19.7 **RESET**

The ADC, DACs, and analog modules should not be reset asynchronously in normal applications, because this may damage external electromechanical devices such as speakers.

If a watchdog reset occurs, the codec's integral power management will not power down the analog circuitry in a safe manner. When software needs to reset the codec, it should set and then clear the SFTRST bit in the TCDCDEBUG register.

19.8 DC PROTECTION MONITOR

If the analog outputs are used to drive a loudspeaker differentially, then DC offsets on the outputs can damage the drivers. If the DAC FIFO output has not changed for a programmable number of samples, the DC protection monitor triggers a DAC FIFO flush. If the number of DC protection monitor events exceeds a programmable limit, the monitor can also shut down the stereo DAC. If the DAC is not being used for audio applications and a constant DC output is required, the monitor can be disabled.

19.9 SIDETONE INJECTION

Sidetone injection from the ADC1 channel can be enabled individually for each DAC channel. The level of sidetone attenuation is programmable in the SIDETONEATTEN field of the TCDCDSP register from 0 to - 36 dB in increments of 3 dB. If the sidetone signal for either channel causes clipping, a warning flag is set (STCLPL or STCLPR in the TCDCDSP register).

If the sidetone is used, ADC1 and the stereo DAC must run from the same clock at the same sample and oversampling rate. This can be enabled by setting the CLKTIE bit in the TCDCADC1CLK register and selecting a DAC oversampling rate of 125.

TEXAS INSTRUMENTS

www.ti.com

19.10 TELEMATICS CODEC REGISTER SET

Table 19-4 lists the telematics codec registers.

Table 19-4. Telematics Codec Registers

Name	Address	Description
TCDCBASIC	FF 4400h	Codec Basic Configuration Register
TCDCDACSTATUS	FF 4404h	Codec DAC Status Register
TCDCADCSTATUS	FF 4408h	Codec ADC Status Register
TCDCDSP	FF 440Ch	Codec DSP Set-Up Register
TCDCADCANA1	FF 4410h	Codec ADC1 Analog Control Register
TCDCADCANA2	FF 4414h	Codec ADC2 Analog Control Register
TCDCADC1CLK	FF 4418h	Codec ADC1 Clock Register
TCDCADC2CLK	FF 441Ch	Codec ADC2 Clock Register
TCDCDACCLK	FF 4420h	Codec DAC Clock Register
TCDCFIFO	FF 4424h	Codec FIFO Trigger Control Register
TCDCIRQEN	FF 4428h	Codec Interrupt Enable Register
TCDCIRQPNDCLR	FF 442Ch	Codec Interrupt Pending/Clear Register
TCDCCOMPC0	FF 4430h	Codec Compensation Filter C0/4 Tap Register
TCDCCOMPC1	FF 4434h	Codec Compensation Filter C1/3 Tap Register
TCDCCOMPC2	FF 4438h	Codec Compensation Filter C2 Tap Register
TCDCADC1	FF 4448h	Codec ADC1 Data Register
TCDCADC2	FF 444Ch	Codec ADC2 DataRegister
TCDCLEFT	FF 4450h	Codec Left-ChannelDAC Data Register
TCDCRIGHT	FF 4454h	Codec Right-ChannelDAC Data Register
TCDCDEBUG	FF 443Ch	Codec Debug Register
TCDCMONITOR	FF 4458h	Codec Monitor Control and Status Register

19.10.1 Codec Basic Configuration Register (TCDCBASIC)

The TCDCBASIC register is a 16-bit read/write register that controls the basic operation of the codec. At reset, this register is cleared to 0000h.

7	6	5	4		2	1	0
MUTEL	DAC	COSR	DACSTMODE			ADC2ON	ADC10N
15	14	13	12	11	10	9	8
DFS	AFS	FLSDAC	FLSDAC	Re	s.	SEN	MUTER
ADC1ON		1UP bit in the TCD led.	ADC1 is enabled t CIRQPNDCLR reg				
ADC2ON		2UP bit in the TCD led.	ADC2 is enabled t CIRQPNDCLR reg				
DACSTMODE	The DAC Sideto taken from ADC		trols the basic func	tion of the DAC, s	idetone input, a	nd output stage. Th	ne sidetone is
	DACSTM	IODE Field	Left Ch	annel	-	Channel	
		000	Of	f		Dff	
		01	Lef			ight	
		10	Lef			Off	
		011 00	Left + Sie Left + Sie			Off ₋eft	
		01	Left + Si			ight	
		10	Lef			Sidetone	
		11	Left + Si		0	Sidetone	
DACOSR		ampling Rate field ed oversampling r	selects 32x, 64x, 1 ate of 125x.	25×, or 128× ove	-		Note that the
	00 – 125×	1 0	01 – 128×		10 – 64×		11 – 32×
MUTEL	0 – Left-channel		be muted after the i	next zero-crossino	g occurs.		
MUTER	occurs. 0 – Right-chann	Channel DAC bit of el DAC mute off. el DAC mute enab	controls whether the	e right-channel DA	AC will be muted	l after the next zero	o-crossing
SEN	and power- dow 0 – Bus interface		clock for the bus in ADCs and DACs r		e bus interface is	s driven with a cloc	k, the power-up
FLSADC	The Flush ADC FIFO bit can be used to flush the ADC FIFOs. Writing 1 to this bit clears the FIFOs. 0 – No effect. 1 – Flush the ADC FIFOs.						
FLSDAC	The Flush DAC bit can be used to flush the stereo DAC FIFOs. Writing 1 to this bit clears the FIFOs. This should be used when deliberately pausing the DAC data stream or any other time when the DAC FIFOs will be underrun deliberately. If the DAC FIFOs are underrun and this bit is not set, then the DAC is continuously driven with the oldest data and this will result in a DC component on the DAC outputs. 0 – No effect. 1 – Flush the DAC FIFOs.						deliberately. If
AFS	The ADC FIFO	Status Mode bit co	ntrols the encoding			O fields in the TCD	CADCSTATUS
DFS			ntrols the encoding			O fields in the TCE	OCDACSTATUS

www.ti.com

19.10.2 Codec DAC Status Register (TCDCDACSTATUS)

The TCDCDACSTATUS register is a 16-bit, read-only register that indicates the status of the DAC FIFOs and the DAC analog output stage. After DAC operation is enabled in the TCDCDACCLK and TCDCBASIC registers, the DACSTATUS bit will become set to indicate that the DAC is operational. The left and right DAC FIFOs are clear while the DAC is disabled. While the DAC is enabled, the FIFOs can be flushed by using the FLSDAC bit in the TCDCBASIC register or by resetting the codec using the Soft Reset bit (SFTRST bit in the TCDCDEBUG register). The DAC FIFOs should be flushed before the DACs are unmuted to clear any old samples. After reset, this register is initialized to 1010h, which indicates the DAC FIFOs contain no valid words and the analog output stage is powered down.

7		5	4		0
	Reserved			LEFTFIFO	
15	14	13	12		8
DACSTATUS	TATUS Reserved			RIGHTFIFO	

LEFTFIFO The Left-Channel DAC FIFO Status field indicates the current status of the FIFO for the left-channel DAC. After reset, the default mode for this field is to report the number of empty words available in the FIFO, so it indicates 10h (empty). By setting the DFS bit in the TCDCBASIC register, this indication is reversed and the field reports the number of valid words of data, as shown below:

FIFO Status Field	DFS Bit	Description
00h	0	Full (16 valid words)
01h to 0Fh	0	15 to 1 valid words
10h	0	Empty (no valid data)
1Eh	0	Underrun error (read while empty)
1Fh	0	Overrun error (written while full)
00h	1	Empty (no valid data)
01h to 0Fh	1	1 to 15 valid words
10h	1	Full (16 valid words)
1Eh	1	Underrun error (read while empty)
1Fh	1	Overrun error (written while full)

- RIGHTFIFO The Right-Channel DAC FIFO Status field indicates the current status of the FIFO for the right-channel DAC. After reset, the default mode for this field is to report the number of empty words available in the FIFO, so it indicates 10h (empty). By setting the DFS bit in the TCDCBASIC register, this indication is reversed and the field reports the number of valid words of data. The encoding of the field is the same as that shown for the LEFTFIFO field.
- DACSTATUS The DAC Status bit indicates whether the DAC output stages are enabled, which may occur due to remaining charge on the bypass capacitor. Software must check that this bit has cleared before entering disabling the clock to the codec (or entering a low-power mode that disables the clock). 0 – DAC off.

1 – DAC on.

19.10.3 Codec ADC Status Register (TCDCADCSTATUS)

The TCDCADCSTATUS register is a 16-bit, read-only register that indicates the current status of the ADC FIFOs, ADCs, and ADC analog input stage. After ADC operation is enabled in the TCDCADCCLKn and TCDCBASIC registers, the corresponding ADCnSTATUS bits will become set to indicate that the ADCs are operational. The ADC FIFOs are unchanged while the ADCs are disabled. While the ADCs are enabled, the FIFOs can be flushed by using the FLSADC bit in the TCDCBASIC register or by resetting the codec using the Soft Reset bit (SFTRST bit in the TCDCDEBUG register). After reset, this register is initialized to 1010h, which indicates the ADC FIFOs contain no valid words and the analog input stage is powered down.

7		5	4		0
	Reserved			ADC1FIFO	
15	14	13	12		8
ADC2STATUS	ADC1STATUS	Res.		ADC2FIFO	

ADC1FIFO

The ADC1 FIFO Status field indicates the current status of the ADC1 FIFO. After reset, the default mode for this field is to report the number of empty words in the FIFO, so it indicates 10h (empty). By setting the AFS bit in the TCDCBASIC register, this indication is reversed and the field reports the number of valid words of data, as shown below:

ADC FIFO Status Field	AFS Bit	Description
00h	0	Full (16 valid words)
01h to 0Fh	0	15 to 1 valid words
10h	0	Empty (no valid data)
1Eh	0	Underrun error (read while empty)
1Fh	0	Overrun error (written while full)
00h	1	Empty (no valid data)
01h to 0Fh	1	1 to 15 valid words
10h	1	Full (16 valid words)
1Eh	1	Underrun error (read while empty)
1Fh	1	Overrun error (written while full)

- ADC2FIFO The ADC2 FIFO Status field indicates the current status of the ADC2 FIFO. After reset, the default mode for this field is to report the number of valid words in the FIFO, so it indicates 10h (empty). By setting the AFS bit in the TCDCBASIC register, this indication is reversed and the field reports the number of valid words of data. The encoding of the field is the same as that shown for the ADC1FIFO field.
- ADC1STATUS The ADC1 Status bit indicates whether ADC1 is enabled. If ADC1 is enabled, its clock must not be disabled. 0 – ADC1 disabled.

1 – ADC1 enabled.

ADC2STATUS The ADC2 Status bit indicates whether ADC2 is enabled. If ADC2 is enabled, its clock must not be disabled. 0 – ADC2 disabled.

1 – ADC2 enabled.

19.10.4 Codec DSP Set-Up Register (TCDCDSP)

The TCDCDSP register is a 16-bit, read/write register that configures some of the DSP portions of the module. After reset, this register is cleared to 0000h.

7		5	4	3	2	1	0		
	DIGMICGAIN		CUSTCOMP ADC2DITOFF ADC1DITOFF				DACDITON		
15	14	13	12			9	8		
Res.	STCLPR	STCLPL		SIDETON	NEATTEN		CLKPH		
DACDITON	The DAC Dither 0 – Dithering ma 1 – Dithering alw	y be on or off.	hering the output,	without regard to	the audio content				
DACDITOFF	The DAC Dither Off bit disables dithering the output, without regard to the audio content. If set, this bit overrides the DACDITON bit. 0 – Dithering may be on or off. 1 – Dithering always off.								
ADC1DITON	0 – Dithering ma	The ADC1 Dither Off bit disables dithering the ADC1 ASDM input. 0 – Dithering may be on or off. 1 – Dithering always off.							
ADC2DITON	The ADC2 Dithe 0 – Dithering ma 1 – Dithering alw	y be on or off.	dithering the ADC	2 ASDM input.					
CUSTCOMP	The CUSTCOMP bit selects between default compensation filter coefficients and custom values in the TCDCCOMP0, TCDCCOMP1, and TCDCCOMP2 registers. Default values vary with the oversampling rate to keep the reconstruction filter output flat up to 20kHz. 0 – Default coefficients are used. 1 – Custom coefficients are used.								
DIGMICGAIN				ne DIGMIC1 input ain is not sufficient					
	DIGMICO	AIN Field	Gair	n (db)					
	00	00		0					
	00	01		2					
	01	10		4					
	01	11		6					
	10	00		8					
	10	01	1	10					
	11	10	1	12					
	11	11	1	14					
CLKPH	The Clock F microphone 0 – Normal	S.	used to invert the	phase of the outpu	ut clock for use wit	h nonstandard dig	jital		

1 – Inverted clock.

TELEMATICS CODEC

120

www.ti.com

STRUMENTS

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com

SIDETONEATTEN

The Sidetone Attenuation field specifies the gain used in the sidetone feedback. This should only be used if the DAC and ADC are operating at the same sample rates.

SIDETONEATTEN Field	Gain (db)
0000	Off (Mute)
0001	-36
0010	-33
0011	-30
0100	-28
0101	-26
0110	-24
0111	-22
1000	-20
1001	-18
1010	-15
1011	-12
1100	-9
1101	-6
1110	-3
1111	0

STCLPL The Sidetone Clipping Left Channel bit indicates that the sidetone applied to the left DAC channel is too large, and the signal has clipped. More headroom should be provided in the DAC data or the level of sidetone should be reduced. Write 1 to the bit to clear it.

0 - No clipping has occurred.

1 – Clipping has occurred.

The Sidetone Clipping Right Channel bit indicates that the sidetone applied to the right DAC channel is too large, and the STCLPR signal has clipped. More headroom should be provided in the DAC data or the level of sidetone should be reduced. Write 1 to the bit to clear it.

0 – No clipping has occurred.
1 – Clipping has occurred.

19.10.5 Codec ADC Analog Control Register n (TCDCADCANAn)

The TCDCADCANAn registers are 16-bit, read/write register that configure the analog portions of the ADCs. After reset, these registers are cleared to 0000h.

7	6	5	4	3		0	
Res.	MICMODE	Res.		MICGAIN			
15	14	13	12	11	10	8	
Res.	HPF		MUTE	MICSEL	Reserved		

MICGAIN The Microphone Gain field selects the gain of the microphone pre-amp. For a MICGAIN of 0 dB, the input should not exceed 500 mVpp (third harmonic distortion ~ -70 dB). For lower distortion, reduce the maximum input signal by 3 dB, a 350 mVpp input gives a third harmonic at ~ -80 dB. This applies to both differential and single-ended configurations. For a differential input, the peak-to-peak voltage is the difference between the maximum negative voltage on TCMICnP. For a single-ended input, the peak-to-peak voltage on TCMICnP.

MICGAIN Field	Gain (db)	Max. Input (mVpp)	Recommended Input (mVpp)
0000	0	500	354
0001	1.8	406	287
0010	4.1	312	220
0011	6.0	251	177
0100	7.8	204	144
0101	10.1	156	111
0110	12.0	126	88.8
0111	14.5	94.2	66.6
1000	16.1	78.3	55.4
1001	18.1	62.2	44.0
1010	20.6	46.7	33.0
1011	22.1	39.3	27.8
1100	24.1	31.2	22.0
1101	26.6	23.4	16.5
1110	28.2	19.5	13.8
1111	30.1	15.6	11.1
The Microphone M	lode field config	ures the analog m	icrophone input.
0 - Differential (T)		MICnN inpute)	1 - Single-ende

 0 - Differential (TCMICnP and TCMICnN inputs).
 1 - Single-ended (TCMICnP input only).

 MICSEL
 The Microphone Select bit selects between the analog and digital microphone inputs. The digital microphone is a four-pin device which will take the ADC clock and produce a sigmadelta stream suitable for the decimator.

 0 - Analog input.
 1 - Digital input.

 MUTE
 The Mute bit enables muting the microphone input. For ADC1, muting is applied to both analog and digital inputs. For

ADC2, only the analog input is muted. 0 – Muting disabled. 1 – Muting enabled.

HPF The High Pass Filter field controls the highpass filter applied to the output of the ADC, typically used for eliminating wind/road/pop noise. The HPF has two options, to enable the ADC to be used at 8 kHz and 16 kHz sample rates without altering the HPF response.

HPF Field	Description				
	8 kHz	16 kHz			
00	Bypass	Bypass			
01	-0.5dB Point at 300 Hz Notch at 55 Hz (recommended)	-0.5dB Point at 600 Hz Notch at 110 Hz			
10	-0.5dB Point at 150 Hz Notch at 27 Hz	-0.5dB Point at 300 Hz Notch at 55 Hz (recommended)			
11	Reserved	Reserved			

From 16 kHz to 24 kHz the HPF roll-off options will be too high frequency for most applications, so it is recommended that the filter is bypassed above 16 kHz. Simple voice applications rarely require sample rates above 16 kHz. It is recommended that for higher quality applications in which 24 kHz recording is required, a signal conditioning algorithm to remove unwanted LF should be used.

MICMODE

19.10.6 Codec ADC Clock Control Register n (TCDCADCnCLK)

The TCDCADCnCLK registers are 16-bit, read/write registers that configure the ADC clock sources. These registers must only be programmed when the corresponding ADC is disabled. At reset, these registers are cleared to 0000h.

15	12	11	10	8	7	0			
Rese	erved	CLKTIE	ADCO	CLKSRC	KSRC ADCCLKDIV				
ADCCLKDIV						erms of half-cycles of the input clock. The field is biased by ue of zero disables the clock.			
ADCCLKSRC	programmed fo used, ADC1 ar PLL1 and PLL	The ADC Clock Source field selects the clock source for the ADC clock divisor. Independent clock sources can be programmed for each ADC and the DAC, to allow each section of the codec to run from different clocks. If the sidetone is used, ADC1 and the DAC must run from the same clock source at the same sample and oversampling rate. Although PLL1 and PLL2 clocks are available as ADC clock sources, it is recommended to use Auxiliary Clock 4 when a timebase derived from a PLL is desired.							
	ADCCL	KSRC Field		Source					
		000		PCLK Clo	ck				
		001		Reserved	d				
		010		PLL2 Cloo	ck				
		011		I2SCLK Inp	out				
		100		AAI SCK In	put				
		101		Auxiliary Clo	ck 4				
		110		PLL1 Cloo	ck				
		111		Clock Disab	led				
CLKTIE						clock, which causes the ADCCLKDIV and ADCCLKSRC or are affected by the CLKTIE bit.			

0 - ADC clock independent of DAC clock.

1 – ADC clock driven by DAC clock.

FEXAS

www.ti.com

19.10.7 Codec DAC Clock Control Register (TCDCDACCLK)

The TCDCDACCLK register is a 16-bit, read/write register that configures the DAC clock source. This register must only be programmed when the DAC is disabled. At reset, this register is cleared to 0000h.

7						0				
	DACCLKDIV									
15	14	13	12	11	10	8				
Res	served	SEL6_144	DAC	RNG	DACO	CLKSRC				
DACCLKDIV	The DAC Clock Divisor field specifies the DAC clock period in terms of half-cycles of the input clock. The field is bia 1, so to get a period of 4 half-cycles, load this field with 3. A value of zero disables the clock.									
DACCLKSRC	programmed for used, ADC1 and PLL1 and PLL2	The DAC Clock Source field selects the clock source for the DAC clock divisor. Independent clock sources can be programmed for each ADC and the DAC, to allow each section of the codec to run from different clocks. If the sidetone is used, ADC1 and the DAC must run from the same clock source at the same sample and oversampling rate. Although PLL1 and PLL2 clocks are available as ADC clock sources, it is recommended to use Auxiliary Clock 4 when a timebase derived from a PLL is desired.								
	DACCL	SRC Field	Source	e						
	(000	PCLK C	lock						
	(001	Reserv							
	(010	PLL2 C	ock						
	()11	I2SCLK	nput						
	1	00	AAI SCK	Input						
	1	01	Auxiliary C	lock 4						
	1	10	PLL1 C	ock						
	1	11	Clock Dis	abled						
DACRNG					C. This is used by the pow lock range is not available,					
	DACRNG Field	Range (MHz)	Typical Sample Rate (kHz)							
	00	2	8							
	01	6	24							
	10	12	12 48							
	11	24	96							
SEL6_144	The Select 6 MI	Hz bit is used to sel	ect the 6 MHz sync	to clock the rec	construction filter, rather the	an the 12 MHz clock.				

0 – 12 MHz clock.

1 – 6 MHz sync.

19.10.8 Codec FIFO Trigger Control Register (TCDCFIFO)

The TCDCFIFO register is a 16-bit, read/write register that configures the events which assert DMA and interrupt requests. At reset, this register is cleared to 0000h.

7			4	3		0	
	ADC2FIFO	TRIG			ADC1FIFOTRIG		
15	14	13	12	11		8	
DMAR	DMAL	DMAADC2	DMAADC1		DACFIFOTRIG		
ADC1FIFOTRIG	The ADC FIFO	Trigger Level field	l specifies how n	nany empty words	are in the ADC1 FIFO when an eve	nt is triggered.	
ADC2FIFOTRIG	The ADC FIFO	Trigger Level field	I specifies how n	nany empty words	are in the ADC2 FIFO when an eve	nt is triggered.	
DACFIFOTRIG	The DAC FIFO event is triggere		l specifies how n	nany valid words a	are remaining in either of the DAC FI	FOs when an	
DMAADC1	The DMA ADC1 bit enables a DMA request in response to the ADC1 trigger event. If the ADC1FIFO bit in the TCDCIRQEN register is set, the DMAADC1 bit is ignored. (Interrupt and DMA requests are mutually exclusive.) 0 – ADC1 DMA request disabled. 1 – ADC1 DMA request enabled.						
DMAADC2	The DMA ADC2 bit enables a DMA request in response to the ADC2 trigger event. If the ADC2FIFO bit in the TCDCIRQEN register is set, the DMAADC2 bit is ignored. (Interrupt and DMA requests are mutually exclusive.) 0 – ADC2 DMA request disabled. 1 – ADC2 DMA request enabled.						
DMAL	The DMA Left Channel bit enables a DMA request in response to the left channel DAC FIFO asserting the DAC trigger event. If the LFTFIFO bit in the TCDCIRQEN register is set, the DMAL bit is ignored. (Interrupt and DMA requests are mutually exclusive.) 0 – Left channel DAC DMA request disabled. 1 – Left channel DAC DMA request enabled.						
DMAR	trigger event. If t requests are mu 0 – Right channe		in the TCDCIRQ		the right channel DAC FIFO assertin the DMAR bit is ignored. (Interrupt a		

www.ti.com

19.10.9 Codec Interrupt Request Enable Register (TCDCIRQEN)

The TCDCIRQEN register is a 16-bit, read/write register that enables interrupt requests from the codec. The clock to the TCDCIRQPNDCLR register is enabled when any of the fields in this register are set. After reset, this register is cleared to 0000h.

7	6	5	4	3	2	1	0			
ADC1DOWN	DACUP	ADC2UP	ADC1UP	RGTFIFO	LFTFIFO	ADC2FIFO	ADC1FIFO			
15	14	13	12	11	10	9	8			
Res	erved	STCLP	MICCLP	ZXDR	ZXDL	DACDOWN	ADC2DOWN			
ADC1FIFO	The ADC1 FIFO bit enables an interrupt when the ADC1 FIFO is filled to the trigger level specified in the TCDCFIFO register, when the FIFO is full, or when the FIFO is empty. Setting the ADC1FIFO bit causes the DMAADC1 bit to be ignored. (Interrupt and DMA requests are mutually exclusive.) 0 – ADC1 FIFO interrupt disabled. 1 – ADC1 FIFO interrupt enabled.									
ADC2FIFO	The ADC2 FIFO bit is used to trigger an interrupt when the ADC2 FIFO is filled to the trigger level specified in the TCDCFIFO register, when the FIFO is full, or when the FIFO is empty. Setting the ADC2FIFO bit causes the DMAADC2 bit to be ignored. (Interrupt and DMA requests are mutually exclusive.) 0 – ADC2 FIFO interrupt disabled. 1 – ADC2 FIFO interrupt enabled.									
LFTFIFO	The Left DAC FIFO bit enables an interrupt when the left-channel DAC FIFO is emptied to the trigger level specified in the TCDCFIFO register, when the FIFO is full, or when the FIFO is empty. Setting the LFTFIFO bit causes the DMAL bit to be ignored. (Interrupt and DMA requests are mutually exclusive.) 0 - Left-channel FIFO interrupt disabled. 1 - Left-channel FIFO interrupt enabled.									
RGTFIFO	the TCDCFIFO r to be ignored. (Ir 0 – Right-channe		FIFO is full, or wl requests are mut isabled.	the right-channel I nen the FIFO is en ually exclusive.)						
ADC1UP	0 – ADC1 power	r-Up bit enables a -up interrupt disab -up interrupt enab	oled.	ADC1 has powere	ed up.					
ADC2UP	0 – ADC2 power	r-Up bit enables a -up interrupt disab -up interrupt enab	oled.	ADC2 has powere	ed up.					
DACUP	0 – DAC power-u	Up bit enables an up interrupt disable up interrupt enable	ed.	ne stereo DAC has	s powered up.					
ADC1DOWN	0 – ADC1 power	r-Down bit enable -down interrupt die -down interrupt er	sabled.	en ADC1 has pow	ered down.					
ADC2DOWN	0 – ADC2 power	r-Down bit enable -down interrupt die -down interrupt er	sabled.	en ADC2 has pow	ered down.					
DACDOWN	0 – DAC power-o	-Down bit enables down interrupt disa down interrupt ena	abled.	n the DAC has por	wered down.					
ZXDL	crosses zero. Th automatically on 0 – Zero-crossing	is is useful if the g	gain of an externa d.	es an interrupt whe Il audio device is to						
ZXDR	crosses zero. 0 – Zero-crossinę	ng Detector Right g interrupt disable g interrupt enabled	d.	les an interrupt wh	nen the right-chan	nel reconstruction	filter output			
MICCLP	0 – Microphone	Clipping bit enabl clipping interrupt c clipping interrupt e	lisabled.	nen the DIGMIC1 i	input gain stage c	lips.				
STCLP	0 – Sidetone clip	pping bit enables ping interrupt disa ping interrupt ena	bled.	n either sidetone fe	eed to the DACs c	lip.				

16

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

19.10.10 Codec Interrupt Pending/Clear Register (TCDCIRQPNDCLR)

The TCDCIRQPNDCLR register is a 16-bit, read/write register that indicates the state of pending interrupt requests. The bits in this register correspond to the interrupt enable bits in the TCDCIRQEN register. A set bit in the TCDCIRQPNDCLR register indicates that the request is enabled and asserted. The TCDCIRQPNDCLR register is also used by the interrupt service routine to clear these requests. Writing 1 to a bit in this register clears the request. Writing 0 has no effect. After reset, this register is cleared to 0000h.

7	6	5	4	3	2	1	0
ADC1DOWN	DACUP	ADC2UP	ADC1UP	RGTFIFO	LFTFIFO	ADC2FIFO	ADC1FIFO
15	14	13	12	11	10	9	8
Rese	erved	STCLP	MICCLP	ZXDR	ZXDL	DACDOWN	ADC2DOWN

19.10.11 Codec Compensation Filter C0/4 Tap Register (TCDCCOMP0)

The TCDCCOMP0 register is a 16-bit, read/write register that specifies the C0 and C4 coefficients of the compensation filter, when the CUSTCOMP bit of the TCDCDSP register is set. When the CUSTCOMP bit is clear, the TCDCCOMP0 register is ignored. After reset, this register is cleared to 0000h

15	0
COMPC0	

19.10.12 Codec Compensation Filter C1/3 Tap Register (TCDCCOMP1)

The TCDCCOMP1 register is a 16-bit, read/write register that specifies the C1 and C3 coefficients of the compensation filter, when the CUSTCOMP bit of the TCDCDSP register is set. When the CUSTCOMP bit is clear, the TCDCCOMP1 register is ignored. After reset, this register is cleared to 0000h

15	0
COMPC1	

19.10.13 Codec Compensation Filter C2 Tap Register (TCDCCOMP2)

The TCDCCOMP2 register is a 16-bit, read/write register that specifies the C2 coefficient of the compensation filter, when the CUSTCOMP bit of the TCDCDSP register is set. When the CUSTCOMP bit is clear, the TCDCCOMP2 register is ignored. After reset, this register is cleared to 0000h

15	0
COMPC2	

15

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

19.10.14 Codec ADC Data Register n (TCDCADCn)

The TCDCADCn registers are 16-bit, read-only registers used to unload a word from the corresponding ADC FIFOs. After reset, these registers are cleared to 0000h

15		0
	ADCDATA	

19.10.15 Codec Left Channel DAC Data Register (TCDCLEFT)

The TCDCLEFT register is a 16-bit, read/write register used to load a word into the left-channel DAC FIFO. After reset, this register is cleared to 0000h

15		0
	LEFTDATA	

19.10.16 Codec Right Channel DAC Data Register (TCDCRIGHT)

The TCDCRIGHT register is a 16-bit, read/write register used to load a word into the right-channel DAC FIFO. After reset, this register is cleared to 0000h

15

0 RIGHTDATA

19.10.17 Codec Debug Register (TCDCDEBUG)

The TCDCDEBUG register is a 16-bit, read/write register used to safely reset the codec. After reset, this register is cleared to 0000h.

15	8		7	6	0
	Reserved	S	FTRST		Reserved
SFTRST	The Soft Reset bit is used to reset the codec i then clearing this bit. After the bit is cleared, c flushed. Pending interrupts and DMA requests ensure no noise (click and pop) is heard. 0 - Normal operation. 1 - Soft reset.	configura	ation registe	rs remair	

EXAS

INSTRUMENTS

www.ti.com

Λ

19.10.18 Codec Monitor Control/Status Register (TCDCMONITOR)

The TCDCMONITOR register is a 16-bit, read/write register that configures the DC protection monitor. The monitor ensures that, if the system hangs, harmful DC outputs are not driven to external devices such as speakers. The monitor is enabled by default. When triggered, it will flush the DAC FIFOs. If the SDE bit is set and the number of DC protection events exceeds a programmable limit, the protection monitor will also shut down the stereo DAC. After reset, this register is cleared to 0000h.

15	14	13	11	10	9	0		
Res.	SDE	SDLIN	ΛIT	MD		DCLIMIT		
DCLIMI	т	DCLIMIT The DC Limit field specifies the number of times a sample can have the same value before the DC protection monitor is triggered to protect the external device. If the number is less than 16, a default value of 1023 is used.						
MD	 The Monitor Disable bit allows software to disable the monitor. By default, the monitor is enabled until software sets this bit. 0 - Monitor enabled. 1 - Monitor disabled. 							
SDLIMI'	Т	The Shutdown Limit field is used to specify the number of DC protection events which may occur before the stereo DAC is shut down. To clear the shutdown condition, software must respond to the interrupt.						
SDE		The Shutdown Enable bit enables stereo DAC shutdown when the monitor is triggered. If a shutdown event occurs, the stereo DAC remains shut down until this bit is cleared. 0 – DAC shutdown disabled. 1 – DAC shutdown enabled.						
SD		The Shut Down bit is a read-only bit which indicates whether the stereo DAC is shut down. 0 – DAC is not shut down. 1 – DAC is shut down.						

19.11 USAGE NOTES

The telematics codec is designed for maximum flexibility, this section gives an overview of recommended system setups for different applications.

19.11.1 *PS Music Playback*

In this example, the ADC is not used and the data is provided from the I²S interface. The I²S interface should be configured as a slave to allow the sample rate to be derived from the external source device. The sample rate of the audio stream must be known or conveyed by other means. Data is most likely passed using interrupt requests. The SRC must cope with the rate conversion and allow for a tolerance in the input rate relative to the output rate, varying the algorithm to match the required output rate by knowing how often data arrives and applying skew on the interpolation/ decimation when required. This can be avoided by using a clock synchronous to the audio source and using an oversampling rate other than 125.

Data: Stereo 44.1-kHz 16-bit linear format.

Audio clock for DAC: 12.288 MHz. DACOSR = 01.

19.11.2 Wireless Music Headphones

In this example, the ADC is not used and compressed data is provided from the Bluetooth link. The data must be converted into 48-kHz, 16-bit stereo audio for use by the DAC.

Data: Stereo 48-kHz 16-bit linear format.

Audio clock for DAC: 12.000 MHz. DACOSR = 00.

19.11.3 Wireless Voice Headset

In this example, the device is configured in the same way as for In-Car Bluetooth Telephony, but the output must drive a headphone amplifier rather than the differential line outputs.

19.11.4 MP3 Playback

This application uses the stereo DAC to playback audio from memory, so a PLL can be used to create an approximate 11.025 MHz clock for 44.1-kHz samples with 12.000 MHz for 48-kHz data.

In this example, the ADC can be used for the typical voice notes feature, 8-kHz recording data in companded format using the CVSD's G.711 circuits to compress the data.

19.11.5 VoIP and 3G Telephony

This application can require G.722 support with sample rates up to 16 kHz in 16-bit mode. The ADC and DAC must be used at these rates. The delay caused by the G.722 algorithm and FIFO depths should be minimized to ensure the group delay specifications are met.

19.12 TUNING THE COMPENSATION FILTER

For unusual sample rates or where the circuit is used to drive a non-linear audio system, it is straightforward to calculate the required compensation filter coefficients. First, replace all coefficients with zero except C2, which should be replaced with a value of 20000 (to ensure that the output frequency response is not limited by headroom). This eliminates the effect of the compensation filter and a frequency sweep on the input to the DAC will produce the uncompensated response of the system. The inverse of this response can then be used to calculate the required coefficients using the inverse discrete fourier transform:

$$c_n = \frac{\Delta t}{2\pi} \int_{0}^{(2\pi)/(\Delta t)} H_D(w) \cos \frac{2\pi n w}{w_s} dw$$

(6)

In which H_D is the desired response (from ω up to ω_{cutoff}), and n is the tap number. In practice, this requires minor manual optimization of the coefficient LSBs to obtain acceptable ripple across the newly optimized passband.

19.13 OBTAINING MAXIMUM DAC SNR

The noise floor of the DAC increases at frequencies above Fs/2 and care should be taken at sample rates below 44.1 kHz, because this reduces SNR. For maximum SNR when the DAC is operated at 8 kHz, a low-pass filter can be used to limit the bandwidth of the analog audio output to 4 kHz before driving a system with wider bandwidth.

If the same DAC channel is used for both 8 kHz and 44.1/ 48 kHz sample rates, the 8-kHz signal can be interpolated in software to a higher rate. This saves the component cost of the external filter at the expense of group delay.

These modifications are not required in typical applications, because the signal noise floor is far higher than the DAC noise to 20 kHz, and speaker bandwidths are not much wider than 4–6 kHz. It becomes an issue when using digital attenuation on voice band signals before the DAC. This reduces SNR linearly and the relative noise can become audible. It is recommended that the DAC is operated at full dynamic range and attenuation is performed at the last stage in the analog signal path.

20 USB CONTROLLER

The dual-role USB controller may be used as either the host or the peripheral in point-to-point communications with another USB device. The USB controller is a peripheral on the CPU core AHB bus. An on-chip USB transceiver supports full-speed (12 Mbps) operation.

The USB controller complies with both the USB 2.0 specification (full-speed mode) and with the On-The-Go supplement to the specification. USB On-The-Go has been introduced to provide a low-cost connectivity solution for consumer devices such as mobile phones, PDAs, digital cameras, and MP3 players. Devices that are solely peripherals initiate transfers through a Session Request Protocol (SRP), while dual-role devices support both SRP and Host Negotiation Protocol (HNP).

The USB controller is configured for up to seven endpoint pipes, one bidirectional pipe for Endpoint 0 and unidirectional transmit and receive pipes for Endpoints 1, 2, and 3. The endpoints can be individually programmed for Bulk/Interrupt or Isochronous transfers. (Whether these endpoints are used for IN transactions or for OUT transactions at any time will depend on whether the device is currently being used as a USB peripheral or as the host for point-to-point communications with another USB peripheral.)

Each endpoint pipe has its own FIFO buffer. Table 20-1 shows the size of each FIFO, which is the maximum packet size which can be used with the corresponding endpoint pipe. In double-buffer mode, the maximum packet size is reduced by a factor of two.

Endpoint	Direction	FIFO Size (bytes)	Transfer Type
0	Bidirectional	64	Control
1	Transmit	256	Isochronous
1	Receive	256	Isochronous
2	Transmit	64	Bulk/Interrupt
2	Receive	64	Bulk/Interrupt
3	Transmit	64	Bulk/Interrupt
3	Receive	64	Bulk/Interrupt

Table 20-1. Endpoint FIFO Buffer Size

The USB controller provides all encoding, decoding, and checking needed for sending and receiving USB packets. It interrupts the CPU only when endpoint data has been successfully transferred.

When acting as the host for point-to-point communications, the USB controller maintains a frame counter and automatically schedules SOF, Isochronous, Interrupt, and Bulk transfers. It also includes support for the SRP and HRP protocols for point-to-point communications, defined in the USB On-The-Go specification.

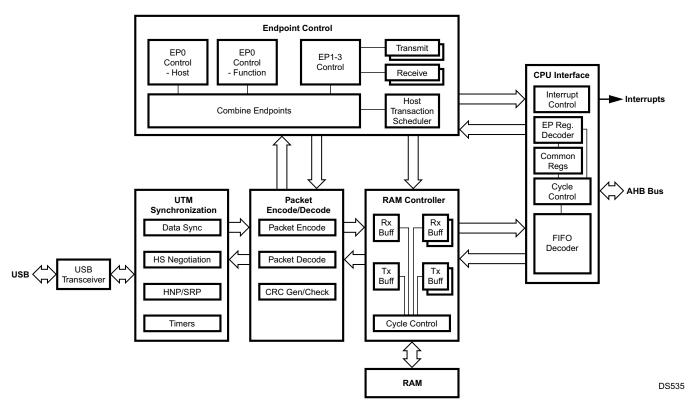


Figure 20-1. USB Controller Block Diagram

20.1 Modes of Operation

The USB controller has two main modes of operation:

- Peripheral Mode—the USB controller encodes, decodes, checks, and directs all USB packets sent and
 received. IN transactions are handled through the device's Tx FIFOs, and OUT transactions are
 handled through its Rx FIFOs. If a FIFO becomes full during an OUT transaction or empty during an IN
 transaction, a NAK handshake packet is automatically returned to the host. A NAK packet is also
 returned for any endpoint that has interrupts disabled. Peripheral mode is used when the device is
 acting as a peripheral to a standard USB host or as a peripheral in point-to-point communications.
 Control, Bulk, Isochronous, and Interrupt transactions are supported.
- Host Mode—the USB controller acts as the host in point-to-point communication with another USB device. In this mode, it can communicate with another device (but not a hub), that supports Control, Bulk, Isochronous, or Interrupt transactions. IN transactions are handled through the Rx FIFOs, and OUT transactions are handled through the Tx FIFOs. As well as encoding, decoding, and checking the USB packets being sent and received, the USB controller automatically schedules Isochronous endpoints and Interrupt endpoints to perform one transaction every n frames, in which n represents the polling interval that has been programmed for the endpoint. The remaining bus bandwidth is shared equally among the Control and Bulk endpoints. Only one downstream device can be supported in Host mode.

www.ti.com

CP3CN37

www.ti.com

20.2 USB CONNECTOR INTERFACE

20.2.1 USB 2.0

A full-speed USB 2.0 interface requires 22Ω series resistors on the D+ and D- data signals, to meet the impedance specification for these signals, as shown in Figure 20-2.

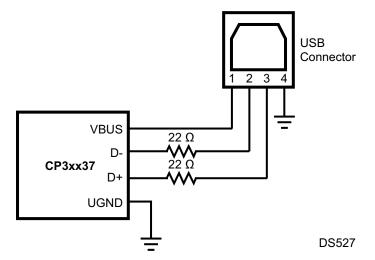


Figure 20-2. USB 2.0 Connector Interface

20.2.2 USB On-The-Go

Additional signals are used to implement USB On-The-Go features, as shown in Figure 20-3.

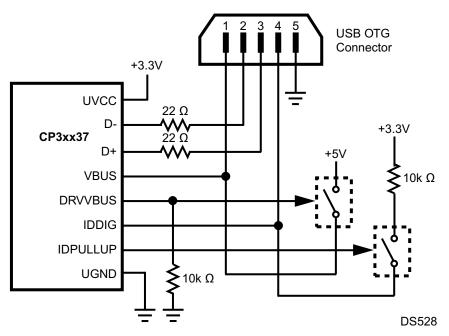


Figure 20-3. USB On-The-Go Connector Interface

For point-to-point communications, the device may also be required to power the VBUS to 5V as the A device of the connection (source of power and default host) or, as the B device (default peripheral), to be able to wake the A device by charging VBUS to 2V. A $100k\Omega$ pulldown resistor on the DRVVBUS output is recommended to ensure that VBUS is not pulled high during reset.

Copyright © 2007–2013, Texas Instruments Incorporated

Whether the USB controller initially operates in Host mode or in Peripheral mode depends on whether it is being used in an A device or a B device, which in turn depends on whether the IDDIG input is low or high. When the USB controller is operating as an A device, it is initially configured to operate in Host mode. When operating as a B device, the USB controller is initially configured to operate in Peripheral mode. However, the HOSTREQ bit in the DEVCTL register can be used to request that a B device becomes the Host the next time there is no activity on the USB bus.

The IDDIG input reflects the state of the ID pin of the device's mini-AB receptacle, with IDDIG being low indicating an A plug and operation as an A device, and IDDIG being high indicating a B plug and operation as a B device.

Information on whether the USB controller is acting as an A device or as a B device is indicated in the DEVCTL register, along with information about the level of VBUS relative to the high and low voltage thresholds used to signal Session Start and Session End.

20.3 DMA OPERATION

The CPU DMA controller may accept DMA requests from the FIFO control logic for Tx Endpoints 1, 2, and 3 and Rx Endpoints 1, 2, and 3.

There are two modes of operation: DMA Mode 0 and DMA Mode 1. In DMA Mode 0, a DMA request is generated for loading all packets and for all received packets, together with an interrupt (if enabled). In DMA Mode 1, a DMA request (but no interrupt) is generated for loading all packets and for all Rx packets of size RXMAXP bytes. An interrupt (but no DMA request) is generated for Rx packets of any other size. The choice of operating mode is specified in the DMAMODE bit in the TXCSR register for Tx endpoints or the RXCSR bit for Rx endpoints.

For Tx endpoints operating in either Mode 0 or Mode 1, the DMA request is asserted when the endpoint FIFO is able to accept a data packet. It is deasserted when TXMAXP bytes have been loaded into the FIFO. Alternatively, the request line will be deasserted when the TXPKTRDY bit in the TXCSR register is set.

For Rx endpoints operating in Mode 0, the DMA request is asserted when a data packet is available in the endpoint FIFO and is deasserted after the last read request is issued. Alternatively, the request line will be deasserted when the RXPKTRDY bit in the RXCSR register is cleared. The appropriate Rx Endpoint interrupt will also be asserted (if enabled). When operating in Mode 1, the DMA request line is asserted only when the packet received has the maximum packet size (as specified in the RXMAXP register). If the packet received has some other size, the DMA request line will not be asserted, but the appropriate Rx Endpoint interrupt will be asserted (if enabled).

Most DMA operations should use DMA Mode 0. DMA Mode 1 is only valuable when large blocks of data are transferred to a Bulk endpoint. The USB protocol requires such packets to be split into a series of packets of the maximum packet size for the endpoint (64 bytes). The last packet in the series will be less than the maximum packet size (or a null packet if the total size of the transfer is an exact multiple of the maximum packet size) and the receiver may use this short packet to signal the end of the transfer. DMA Mode 1 can be used to avoid the overhead of interrupting the processor after each individual packet. Instead, the processor is interrupted after the transfer has completed. If the endpoint is configured for Isochronous transfers, DMA Mode 0 should always be selected for any DMA transfers.

DMA transfers may be 8-bit, 16-bit, or 32-bit as required. However, all the transfers associated with one packet (with the exception of the last) must be of the same width so that the data is consistently byte-, word- or doubleword-aligned. The last transfer may contain fewer bytes than the previous transfers to complete an odd-byte or odd-word transfer.

CP3CN37

20.4 USB CONTROLLER REGISTER SET

The USB controller common registers affect all endpoints. In addition, for each endpoint there is an endpoint-specific register bank. There is an indexed addressing mechanism for accessing the endpoint-specific register banks, and there are also non-indexed images of each register bank. Either the indexed or the non-indexed images may be used to access these registers. The INDEX register selects the register bank accessible in the image at FF 0810h.

Table 20-2 lists the USB controller common registers, Table 20-3 lists the endpoint-specific registers in a bank, and Table 20-4 lists the register banks.

Name	Address	Description
FADDR	FF 0800h	Function Address Register
POWER	FF 0801h	Power Management Register
INTRTX	FF 0802h	Interrupt Register for Endpoint 0 and Tx Endpoints 1-3
INTRRX	FF 0804h	Interrupt Register for Rx Endpoints 1-3
INTRTXE	FF 0806h	Interrupt Enable Register for INTRTX
INTRRXE	FF 0808h	Interrupt EnableRegister for INTRRX
INTRUSB	FF 080Ah	Interrupt Register for USB Common Interrupts
INTRUSBE	FF 080Bh	Interrupt Enable Register for INTRUSB
FRAME	FF 080Ch	Frame Number Register
INDEX	FF 080Eh	Index Register
EP0FIFO	FF 0820h	Endpoint 0 FIFO
EP1FIFO	FF 0824h	Endpoint 1 FIFO
EP2FIFO	FF 0828h	Endpoint 2 FIFO
EP3FIFO	FF 082Ch	Endpoint 3 FIFO
DEVCTL	FF 0860h	USB OTG Device Control Register
VCTRL	FF 0C00h	USB Transceiver Control Register
VSTATUS	FF 0C02h	USB Transceiver Status Register
TXMAXP	base + 00h	Transmit Maximum Packet Size Register
CSR0	base + 02h	Control and Status Register (Endpoint 0)
TXCSR	base + 02h	Transmit Control and Status Register (Endpoints 1-3)
RXMAXP	base + 04h	Receive Maximum Packet Size Register
RXCSR	base + 06h	Receive Control and Status Register
COUNT0	base + 08h	Receive Count Register (Endpoint 0)
RXCOUNT	base + 08h	Receive Count Register (Endpoints 1-3)
TXTYPE	base + 0Ah	Transmit Transfer Type Register
NAKLIMITO	base + 0Bh	NAK Limit Register (Endpoint 0)
TXINTERVAL	base + 0Bh	Transmit Polling Interval Register (Endpoints 1-3)
RXTYPE	base + 0Ch	Receive Transfer Type Register
RXINTERVAL	base + 0Dh	Receive Polling Interval Register (Endpoints 1-3)

Table 20-2. USB Common Interface Registers

www.ti.com

Name	Address	Description
TXMAXP	base + 00h	Transmit Maximum Packet Size Register
CSR0	base + 02h	Control and Status Register (Endpoint 0)
TXCSR	base + 02h	Transmit Control and Status Register (Endpoints 1-3)
RXMAXP	base + 04h	Receive Maximum Packet Size Register
RXCSR	base + 06h	Receive Control and Status Register
COUNT0	base + 08h	Receive Count Register (Endpoint 0)
RXCOUNT	base + 08h	Receive Count Register (Endpoints 1-3)
TXTYPE	base + 0Ah	Transmit Transfer Type Register
NAKLIMIT0	base + 0Bh	NAK Limit Register (Endpoint 0)
TXINTERVAL	base + 0Bh	Transmit Polling Interval Register (Endpoints 1-3)
RXTYPE	base + 0Ch	Receive Transfer Type Register
RXINTERVAL	base + 0Dh	Receive Polling Interval Register (Endpoints 1-3)

Table 20-3. USB Endpoint-Specific Interface Registers

Table 20-4. USB Endpoint Register Banks

Name	Base Address	Description
INDEXED	FF 0810h	Indexed Register Bank
EPONIND	FF 0900h	Endpoint 0 Register Bank
EP1NIND	FF 0910h	Endpoint 1 Register Bank
EP2NIND	FF 0920h	Endpoint 2 Register Bank
EP3NIND	FF 0930h	Endpoint 3 Register Bank

20.4.1 Function Address Register (FADDR)

The FADDR register is an 8-bit, read/write register that holds the function address. When the USB controller is in Host mode, this register should be loaded with the value sent in a SET_ADDRESS command during device enumeration as the address for the peripheral device. When the USB controller is being used in Peripheral mode, this register should be loaded with the address received through a SET_ADDRESS command, which will then be used for de- coding the function address in subsequent token packets. The new address will not take effect immediately, because the host will still be using the old address for the Status stage of the device request. The USB controller will continue to use the old address for decoding packets until the de- vice request has completed. At reset, this register is cleared to 00h.

7	6		0
Res.		FUNCADDR	
•			

FUNCADDR The Function Address field holds the 7-bit address of the peripheral part of the transaction.

CP3CN37

20.4.2 Power Register (POWER)

The POWER register is an 8-bit, read/write register that is used for controlling Suspend and Resume signaling, and some basic operational aspects of the USB controller. At reset, this register is initialized to 20h.

7	6	5	4	3	2	1	0
ISOUPDATE	SOFTCONN	Reserved (Must be 0)	Reserved (Must be 0)	RESET	RESUME	SUSPENDMODE	ENABLESUSPENDM
ENABLESUSPE	0 – US	nable Suspend Mo B transceiver alwa B transceiver disa	ays enabled.		USB transceiv	ver in Suspend mode	e to save power.
SUSPENDMODE The Suspend Mode bit is set by software to enter Suspend mode (Host mode) or by hard- ware when mode is entered (Peripheral mode). It will be cleared when the INTRUSB register is read (as a result suspend interrupt). It will also be cleared if Suspend mode is exited by setting the Resume bit to in wake-up. 0 - Suspend mode has not been entered. 1 - Suspend mode has been entered (Pe- ripheral mode), or software has request- ed entry into S (Host mode).						as a result of receiving a bit to initiate a remote	
RESUME							
RESET	signall reador 0 – No	The Reset bit can be used to determine when Reset signaling is present on the USB. It is set when I signalling is detected and remains set until the bus reverts to an idle state. This bit is read/write in Ho readonly in Peripheral mode. 0 – No Reset signalling detected. 1 – Reset signalling detected.					
SOFTCONN							nnect/disconnect the is acting as a peripheral. ear disconnected until ceiver into its normal tion is complete and the NN bit has been set,
 ISOUPDATE 1 – USB transceiver is enabled to drive D+ and D ISOUPDATE The Isochronous Update bit only affects IN Isochronous endpoints (Endpoint 1). It is normally used as ensuring a "clean" start-up of an IN Isochronous pipe. When set, the USB controller will wait for an SO the time TXPKTRDY is set before sending the packet. If an IN token is received before an SOF token, length data packet will be sent. This bit is only valid in Peripheral mode. 0 – Normal mode. 1 – Isochronous update mode. 						ait for an SOF token from	

20.4.3 Interrupt Register for Endpoint 0 and Transmit Endpoints (INTRTX)

The INTRTX register is a 16-bit, read-only register that indicates which interrupts are currently asserted for Endpoint 0 and the Transmit Endpoints 1, 2, and 3. Bits for endpoints that have not been configured will always return 0. All asserted interrupts are cleared when this register is read. After reset, this register is cleared to 0000h.

15		4	3	2	1	0
Reserved			EP3TX	EP2TX	EP1TX	EP0
EP0	The Endpoint 0 bit indicates that an interr 0 – No interrupt asserted. 1 – Interrupt asserted.	rupt was as	serted for Endpoin	nt 0.		
EPnTX	The Endpoint n Transmit bit indicates that 0 – No interrupt asserted. 1 – Interrupt asserted.	t an interru	pt was asserted fo	or Transmit Endpo	int n (n = 1 to 3).	

20.4.4 Interrupt Register for Receive Endpoints (INTRRX)

The INTRRX register is a 16-bit, read-only register that indicates which interrupts are currently asserted for Receive Endpoints 1, 2, and 3. Bits for endpoints that have not been configured will always return 0. All asserted interrupts are cleared when this register is read. After reset, this register is cleared to 0000h.

Reserved EP3RX EP	2RX EP1RX	Res.

EPnRX

The Endpoint n Receive bit indicates that an interrupt was asserted for Receive Endpoint n (n = 1 to 3). 0 - No interrupt asserted.

1 – Interrupt asserted.

20.4.5 Interrupt Enable Register for Endpoint 0 and Transmit Endpoints (INTRTXE)

The INTRTXE register is a 16-bit, read/write register that controls whether interrupts are enabled for Endpoint 0 and the Transmit Endpoints 1, 2, and 3. Bits for endpoints that have not been configured will always return 0. After reset, this register is initialized to 000Fh.

15	4	3	2	1	0
	Reserved	EP3TX	EP2TX	EP1TX	EP0
EP0 The Endpoint 0 bit controls whether an interrupt is enabled for Endpoint 0.					

0 – No interrupt enabled.

1 – Interrupt enabled.

EPnTX The Endpoint n Transmit bit controls whether an interrupt is enabled for Transmit Endpoint n (n = 1 to 3).

0 – No interrupt enabled.1 – Interrupt enabled.

20.4.6 Interrupt Enable Register for Receive Endpoints (INTRRXE)

The INTRRXE register is a 16-bit, read/write register that controls whether interrupts are enabled for Receive Endpoints 1, 2, and 3. After reset, this register is initialized to 000Eh.

15	4	3	2	1	0
	Reserved	EP3RX	EP2RX	EP1RX	Res.
EPnRX	The Endpoint n Receive bit controls whether an int	errupt is enabled for	or Receive Endpoi	nt n (n = 1 to 3).	

The Endpoint n Receive bit controls whether an interrupt is enabled for Receive Endpoint n (n = 1 to 3). 0 - No interrupt enabled.

1 - Interrupt enabled.

20.4.7 Interrupt Register for USB Controller (INTRUSB)

The INTRUSB register is an 8-bit, read-only register that indicates which interrupts are currently asserted for the USB controller. All asserted interrupts are cleared when this register is read. After reset, this register is cleared to 00h.

7	6	5	4	3	2	1	0			
VBUSERROR	SESSREQ	DISCON	CONN	SOF	RESETBABBLE	RESUME	SUSPEND			
SUSPEND	The Suspend bit indicates that an interrupt was asserted because Suspend signalling was detected on the bus. This bit is only valid in Peripheral mode. 0 – No interrupt asserted. 1 – Interrupt asserted.									
RESUME	The Resume bit indicates that an interrupt was asserted because Resume signaling was detected while the USB Controller was in Suspend mode. 0 – No interrupt asserted. 1 – Interrupt asserted.									
RESETBABBLE	BLE The Reset/Babble bit indicates that an interrupt was asserted because babble was detected (unexpected bus activity) in Host mode or reset signalling was detected in Peripheral mode. 0 – No interrupt asserted. 1 – Interrupt asserted.									
SOF	The Start of F 0 – No interru 1 – Interrupt a	ot asserted.	that an interrup	ot was asserte	ed because a new fran	ne started.				
CONN	The Connection valid in Host n 0 – No interrup 1 – Interrupt a	node. ot asserted.	t an interrupt w	vas asserted b	ecause a device conr	ection was detect	ed. This bit is only			
DISCON		nded in Peripheral ot asserted.		as asserted b	ecause a device disco	onnect was detecte	ed in Host mode			
SESSREQ		oit is only valid whe ot asserted.			erted because a Session A device.	on Request signal	was detected on			
VBUSERROR		on. This bit is only ot asserted.			because VBUS droppe er is an A device.	ed below the VBUS	S Valid threshold			

20.4.8 Interrupt Enable Register for USB Controller (INTRUSBE)

The INTRUSBE register is an 8-bit, read/write register that controls which USB controller interrupts are enabled. After reset, this register is initialized to 06h.

7	6	5	4	3	2	1	0			
VBUSERROR	SESSREQ	DISCON	CONN	SOF	RESETBABBLE	RESUME	SUSPEND			
SUSPEND	The Suspend bit enables an interrupt when Suspend signalling is detected on the bus. This bit is only valid in Peripheral mode. 0 – No interrupt enabled. 1 – Interrupt enabled.									
RESUME	The Resume bit enables an interrupt when Resume signaling is detected while the USB Controller is in Suspend mode. 0 – No interrupt enabled. 1 – Interrupt enabled.									
RESETBABBLE	•									
SOF	The Start of F 0 – No interru 1 – Interrupt e		an interrupt w	hen a new fra	me starts.					
CONN	The Connecti 0 – No interru 1 – Interrupt e	ipt enabled.	interrupt when	n a device cor	nnection is detected. This	bit is only valid in	Host mode.			
DISCON	The Disconne Peripheral mo 0 – No interru 1 – Interrupt e	ode. Ipt enabled.	interrupt wher	n a device disc	connect is detected in Ho	st mode or a sess	ion is ended in			
SESSREQ	The Session Request bit enables an interrupt when a Session Request signal is detected on the bus. This bit is only valid when the USB controller is an A device. 0 – No interrupt enabled. 1 – Interrupt enabled.									
VBUSERROR		when the USB con opt enabled.			s below the VBUS Valid t	hreshold during a	session. This bit			

20.4.9 Frame Register (FRAME)

The Frame register is a 16-bit, read-only register that holds the last received frame number. At reset, this register is cleared to 0000h.

15	11	10		0
Reserved			FRAMENUMBER	

FRAMENUMBER The Frame Number field holds the 11-bit frame number.

20.4.10 Index Register (INDEX)

The Index register is an 8-bit, read/write register that selects the endpoint-specific register bank which is accessible in the region FF 0810h to FF 081Fh. At reset, this register is cleared to 00h.

7	4	3		0
Re	served		INDEX	
		· · · ·		

INDEX The Index field holds the 4-bit endpoint index. Only 0000b, 0001b, 0010b, and 0011b are valid values.

20.4.11 Endpoint n FIFO Register (EPnFIFO)

The Endpoint n FIFO registers are 32-bit, read/write registers that access the transmit FIFOs when written and the receive FIFOs when read (n = 0 to 3).

31		0
	FIFODATA	

20.4.12 Device Control Register (DEVCTL)

The DEVCTL register is an 8-bit, read/write register that is used to select whether the USB Controller is operating in Peripheral mode or in Host mode, and for controlling and monitoring the USB VBus line. After reset, this register is cleared to 00h.

7	6	5	4	3	2	1	0			
BDEVICE	FSDEV	LSDEV	VBUS	3	HOSTMODE	HOSTREQ	SESSION			
SESSION	The Session bit is set or cleared by software to start or end a session, when operating as an A device. As a B device, this bit is controlled by hardware to indicate when a session starts and ends. It is also set by software to initiate the Session Request Protocol, or cleared by software when in Suspend mode to perform a software disconnect. 0 – Session disabled. 1 – Session enabled.									
HOSTREQ	The Host Request bit is set to initiate the Host Negotiation Protocol when Suspend mode is entered. It is cleared when Host Negotiation is completed. This bit is only valid as a B device. 0 – No host negotiation. 1 – Initiate host negotiation.									
HOSTMODE	The Host Mode bit indicates whether the USB controller is in Host or Peripheral mode. This is a read-only bit. 0 – Peripheral mode. 1 – Host mode.									
VBUS	The VBUS field indicates the current VBUS level. This is a read-only field. 00 – Below SessionEnd. 01 – Above SessionEnd, below AValid. 10 – Above AValid, below VBusValid. 11 – Above VBusValid.									
LSDEV	read-only bit.	evice not detected	es when a low-speed d.	device is dete	cted. Low-speed r	node is not suppo	rted. This is a			
FSDEV	The Full-Speed Device bit indicates when a full-speed device is detected. This bit is only valid in Host mode. This is a read-only bit. 0 – Full-speed device not detected. 1 – Full-speed device detected.									
BDEVICE			r the USB controller s is a read-only bit.	is operating as	an A device or a l	3 device. This bit	is only valid			

20.4.13 Endpoint 0 Control and Status Register (CSR0)

The CSR0 register is a 16-bit, read/write register that provides control and status bits for Endpoint 0. It has different formats in Peripheral and Host modes. After reset, this register is cleared to 0000h.

Table 20-5. Peripheral Mode Format

19 5	8	7	6	5	4	3	2	1	0	
Res.	FLUSHFIFO	SERVICED- SETUPEND	SERVICED- RXPKTRDY	SENDSTALL	SETUPEND	DATA END	SENT STALL	TXPKT RDY	RXPKT RDY	
RXPKTF	wh 0 –	The Receive Packet Ready bit is set when a data packet has been received. An interrupt is asserted (if enabled) when this bit is set. Software clears the RXPKTRDY bit by writing 1 to the SERVICEDRXPKTRDY bit. 0 – No data packet received. 1 – Data packet received.								
ТХРКТБ	aut clea 0 –	e Transmit Packet Re omatically when the ared. • No packet in transm • Data packet in FIFC	data packet has be it FIFO.	een transmitted. An						
SENTST	nex 0 –	The Sent STALL Handshake bit is set when a STALL handshake is transmitted. Software clears this bit to detect the next STALL handshake. 0 – No STALL handshake since the bit was last cleared. 1 – STALL handshake transmitted.								
DATAEN	pac a z 0 –	The Data End bit is set by software under three circumstances: when setting the TXPKTRDY bit for the last data packet, when clearing the RXPKTRDY bit after unloading the last data packet, or when setting the TXPKTRDY bit for a zero-length data packet. The bit is cleared automatically. 0 – Not the end of the data. 1 – Last or zero-length data packet.								
SETUPE	ass 0 –	serted and the FIFO f	t when a control transaction ends before the DATAEND bit has been set. An interrupt will be flushed at this time. The bit is cleared by writing a 1 to the SERVICEDSETUPEND bit. of control transaction. control transaction.							
SENDS	trar 0 –	The Send STALL Handshake bit is written with 1 to terminate the current transaction. The STALL handshake will be transmitted, and then this bit will be cleared automatically. 0 – Normal operation. 1 – Write 1 to send the STALL handshake.								
SERVIC RXPKTF	RDY is c 0 –	e Serviced Receive F cleared automatically. Normal state. Write 1 to clear the		et Ready bit is written with 1 to clear the RXPKTRDY bit. The SERVICEDRXPKTRDY				RDY bit		
SERVIC SETUPE	END aut 0	The Serviced Setup End bit is written with 1 to clear the SETUPEND bit. The SERVICED-SETUPEND bit is cleared automatically. 0 – Normal state. 1 – Write 1 to clear the SETUPEND bit.								
FLUSHF	TXI The 0 –	e Flush FIFO bit is wi PKTRDY/RXPKTRD e FLUSHFIFO bit is o Normal operation. Flush the Endpoint (Y bit is cleared. Th cleared automatica	e FLUSHFIFO bit h lly.	as no effect unless				t is set.	

Table 20-6. Host Mode Format

15	9	8	7	6	5	4	3	2	1	0	
Rese	rved	FLUSHFIFO	NAKTIMEOUT	STATUSPKT	REQPKT	ERROR	SETUP PKT	RX STALL	TXPKT RDY	RXPKT RDY	
RXPKTF	RDY	The Receive Packet Ready bit is set when a data packet has been received. An interrupt is asserted (if enabled) when this bit is set. Software clears this bit after unloading the packet from the FIFO to detect the next packet. 0 – No data packet received. 1 – Data packet received.									
TXPKTR	RDY	The Transmit Packet Ready bit is set by software after loading a data packet into the FIFO. The bit is cleared automatically when the data packet has been transmitted. An interrupt is asserted (if enabled) when this bit is cleared. 0 – No packet in transmit FIFO. 1 – Data packet in FIFO, ready to transmit.									
RXSTAL	_L	The Receive STALL handshake bit is set when a STALL handshake is received. Software clears this bit to detect the next STALL handshake. 0 – No STALL handshake since the bit was last cleared. 1 – STALL handshake received.									
SETUPF	PKT	The Setup Packet bit is set by software at the same time the TXPKTRDY bit is set, to select a SETUP token instead of an OUT token for the transaction. 0 – OUT token selected. 1 – SETUP token selected.									
ERROR		The Error bit is set when three attempts have been made to perform a transaction with no response from the peripheral. An interrupt is asserted when this bit is set. Software clears this bit to detect the next error event. 0 – No error event detected since the bit was last cleared. 1 – Error event detected.									
REQPK	Т	The Request Packet bit is written with 1 to request an IN transaction. The REQPKT bit is cleared when the RXPKTRDY bit is set. 0 – No request asserted. 1 – Request for an IN transaction asserted.							KTRDY		
STATUS	SPKT	The Status Packet bit is set by software at the same time as the TXPKTRDY or REQPKT bit is set, to perform a Status Stage transaction. Setting this bit ensures that the data toggle is set to 1 so that a DATA1 packet is used for the Status Stage transaction. 0 – Normal operation. 1 – Status Stage transaction selected.									
NAKTIM	IEOUT	The NAK Timeout bit is set when Endpoint 0 is halted following the receipt of NAK responses for longer than the time se by the NAKLIMITO register. Software must clear this bit to allow the endpoint to continue. 0 – Normal operation. 1 – Endpoint 0 halted.							e time set		
FLUSHF	FIFO	TXPKTRDY/RX 0 – Normal ope	O bit is written wi (PKTRDY bit is cl eration. ndpoint 0 FIFO a	eared. The FLUS	SHFIFO bit has	s no effect unle				set.	

20.4.14 Endpoint 0 Count Register (COUNT0)

The COUNT0 register is an 8-bit, read-only register that indicates the current number of received data bytes in the Endpoint 0 FIFO. The value changes as the contents of the FIFO change, and it is only valid while the CSR0.RXPKTRDY bit is set. At reset, this register is cleared to 00h.

7	6		0
Res.		COUNT	

COUNT

The Count field indicates how many valid bytes are in the Endpoint 0 receive FIFO.

20.4.15 Endpoint 0 NAK Limit Register (NAKLIMIT0)

The NAKLIMIT0 register is an 8-bit, read/write register that specifies the number of frames after which an Endpoint 0 timeout occurs in Host mode when receiving a stream of NAK responses. (Equivalent settings for other endpoints can be made through their TXINTERVAL and RXINTERVAL registers.)

The number of frames is 2^{m-1}, in which m is the value specified in the register. If the host receives NAK responses from the target for more frames than the number represented by the limit set in this register, the endpoint will be halted. At reset, this register is cleared to 00h.

	7	5	4	0	
	Reserved			LIMIT	
LIMIT The Limit field specifies the Endpoint 0 timeout. A value of 0 or 1 disables the timeout function. Values from 2 to 16					

IT The Limit field specifies the Endpoint 0 timeout. A value of 0 or 1 disables the timeout function. Values from 2 to 1 (decimal) enable the timeout function. Values above 16 are reserved.

20.4.16 Transmit Maximum Packet Size Register (TXMAXP)

The TXMAXP register is a 16-bit, read/write register that specifies the maximum amount of data that can be transferred through the selected transmit endpoint in a single frame. This value must comply with the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transactions in full-speed operations. The value should match the wMaxPacketSize field of the Standard Endpoint Descriptor for the associated endpoint (see *Universal Serial Bus Specification Revision 2.0*, Chapter 9). A mismatch could cause unexpected results. The value written to this register must not exceed the transmit FIFO size. If the value written to this register is less than, or equal to, half the transmit FIFO size, two packets can be buffered. If this register is changed after packets have been sent from the endpoint, then the endpoint FIFO should be completely flushed (using the FLUSHFIFO bit in the TXCSR register) after writing the new value to the TXMAXP register. There is a TXMAXP register for each transmit endpoint (except Endpoint 0). At reset, this register is cleared to 0000h.

15	11	10	0				
Reserved			MAXSIZE				

MAXSIZE The Maximum Packet Size field specifies (in bytes) the maximum payload transmitted in a single transaction. Valid values for this field are 8, 16, 32, and 64 (decimal).

20.4.17 Transmit Control and Status Register (TXCSR)

The TXCSR register is a 16-bit, read/write register that provides control and status bits for the associated endpoint (except Endpoint 0). It has different formats in Peripheral and Host modes. After reset, this register is initialized to 2000h.

Table 20-7. Peripheral Mode Format

7	6	5	4	3	2	1	0			
Reserved CLF	RDATATOG	SENTSTALL	SENDSTALL	FLUSHFIFO	UNDERRUN	FIFONOTEMPTY	TXPKTRDY			
15	14	13	12	11	10	9	8			
AUTOSET	ISO	Reserved	d DMAENA	B FRCDATAT	OG DMAMOD	E Res	erved			
TXPKTRDY	The Transmit Packet Ready bit is set by software after loading a data packet into the FIFO. The bit is cleared automatically when the data packet has been transmitted. An interrupt is asserted (if enabled) when this bit is cleared. 0 – No packet in transmit FIFO. 1 – Data packet in FIFO, ready to transmit.									
FIFONOTEMPT	0 – Trar	O Not Empty bit in Ismit FIFO is emp Ismit FIFO is not e	ty.	is at least one pa	cket in the transm	it FIFO.				
UNDERRUN	UNDER 0 – No u	RUN bit to detect	the next underrun tected since the b			/ bit is clear. Software	e clears the			
FLUSHFIFO	The FLUSHFIFO bit is written with 1 to flush the transmit FIFO. The FIFO pointer is reset and the TXPKTRDY bit is cleared. The FLUSHFIFO bit has no effect unless TXPKTRDY bit is set. If double-buffering is enabled, the FLUSHFIFO bit may need to be written twice to completely clear the FIFO. The FLUSHFIFO bit is cleared automatically. 0 – Normal operation. 1 – Flush the transmit FIFO and clear the TX- PKTRDY bit.									
SENDSTALL	this bit to 0 – Norr					e to an IN token. Softw s used for isochronou				
SENTSTALL	and the 0 – No S		cleared. Software since the bit was	clears this bit to o	ake is transmitted. detect the next ST	Also, the transmit FIF ALL handshake.	FO is flushed,			
CLRDATATOG	0 – Norr	ar Data Toggle bit nal operation. e 1 to reset endpo			nt data toggle to 0	ι.				
DMAMODE	0 – DMA	A Mode bit specifi A mode 0. A mode 1.	es the DMA mode	9.						
FRCDATATOG	cleared endpoin 0 – Norr	from the FIFO, wit	hout regard to wh communicate rat	ether an ACK was		switch and the data pa in be used by Interrup ts.				
DMAENAB	0 – DMA	A Enable bit is set A request disabled A request enabled		nsmit DMA reques	t for the endpoint.					
ISO	0 – Bulk	chronous Transfer /Interrupt transfer hronous transfer t	type.	her the Bulk/Interr	upt or Isochronou	s transfer type is used	I.			
AUTOSET	of the m maximu automat maximu 0 – Norr	aximum packet siz m packet size is lo ically set when the m packet size. nal mode.	ze (value in TXMA baded, then the TX e first of two packe	XP register) is loa (PKTRDY bit mus ets in the transmit	aded in the transm t be set explicitly t FIFO has been se	RDY bit is automatical it FIFO. If a packet of by software. The TXPI int and the second pa into the transmit FIFC	less than the KTRDY bit is also cket is the			

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

NSTRUMENTS

Texas

Table 20-8. Host Mode Format

7	6	5	4	3	2	1	0			
NAKTIMEOUT	CLRDATATOG	RXSTALL	Reserved	FLUSHFIFO	ERROR	FIFONOTEMPTY	TXPKTRDY			
15	14	13	12	11	10	9	8			
AUTOSET	Rese	rved	DMAENAB	FRCDATATOG	DMAMODE	E Rese	erved			
TXPKTRDY	 TXPKTRDY The Transmit Packet Ready bit is set by software after loading a data packet into the FIFO. The bit is cleared automatically when the data packet has been transmitted. An interrupt is asserted (if enabled) when this bit is cleared. 0 – No packet in transmit FIFO. 1 – Data packet in FIFO, ready to transmit. 									
FIFONOTEMPT	0 – Transmit I	t Empty bit indicat FIFO is empty. FIFO is not empty		t least one packet i	n the transmit	t FIFO.				
ERROR										
FLUSHFIFO										
RXSTALL	TXPKTRDY b 0 – No STALI	The Receive STALL Handshake bit is set when a STALL handshake is received. The FIFO pointer is reset and the TXPKTRDY bit is cleared. Software clears the RXSTALL bit to detect the next STALL handshake. 0 – No STALL event detected since the bit was last cleared. 1 – STALL event detected.								
CLRDATATOG	0 – Normal op			et the endpoint da	ta toggle to 0.					
NAKTIMEOUT	than the time endpoint to co 0 – No NAK ti	set as the NAK Li ontinue. This bit is	imit in the TXINTE only valid for Bul cted since the bit	ERVAL register. So		ceipt of NAK respons the NAKTIMEOUT b				
DMAMODE	The DMA Mo 0 – DMA mod 1 – DMA mod		e DMA mode.							
FRCDATATOG	cleared from t endpoints tha 0 – Normal op	the FIFO, without the transmission of the tent of	regard to whethe municate rate fee		eived. This car	witch and the data pa n be used by Interrup s.				
DMAENAB	The DMA Ena 0 – DMA requ 1 – DMA requ	lest disabled.	nable the transmi	t DMA request for t	the endpoint.					
AUTOSET	of the maximu maximum pao automatically maximum pao 0 – Normal m	Im packet size (va ket size is loaded set when the first ket size. ode.	alue in TXMAXP I I, then the TXPKT of two packets in	register) is loaded i FRDY bit must be s the transmit FIFO	in the transmi et explicitly by have been se	DY bit is automaticall t FIFO. If a packet of y software. The TXPF ent and the second pa nto the transmit FIFO	less than the (TRDY bit is also acket is the			

20.4.18 Receive Maximum Packet Size Register (RXMAXP)

The RXMAXP register is a 16-bit, read/write register that specifies the maximum amount of data that can be transferred through the selected receive endpoint in a single frame. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt, and Isochronous transfers. The value should match the wMaxPacketSize field of the Standard Endpoint Descriptor for the associated endpoint (see *Universal Serial Bus Specification Revision 2.0*, Chapter 9), A mismatch could cause unexpected results. The value written to this register must not exceed the receive FIFO size. If the value written to this register is less than, or equal to, half the receive FIFO size, two packets can be buffered. There is a RXMAP register for each receive endpoint (except Endpoint 0). At reset, this register is cleared to 0000h.

15	11	10	0
Rese	rved		MAXSIZE

MAXSIZE The Maximum Packet Size field specifies (in bytes) the maximum payload received in a single transaction.

20.4.19 Receive Control and Status Register (RXCSR)

The RXCSR register is a 16-bit, read/write register that provides control and status bits for the associated endpoint (except Endpoint 0). It has different formats in Peripheral and Host modes. After reset, this register is cleared to 0000h.

Table 20-9. Peripheral Mode Format

7	6	5	4	3	2	1	0				
CLRDATATOG	SENTSTALL	SENDSTALL	FLUSHFIFO	DATAERROR	OVERRUN	FIFOFULL	RXPKTRDY				
15	14	13	12	11	10		8				
AUTOCLEAR	ISO	DMAENAB	Reserved	DMAMODE		Reserved					
RXPKTRDY	unloaded from th 0 – No packet in	The Receive Packet Ready bit is set when a data packet is received. Software should clear this bit when the packet is unloaded from the receive FIFO to detect the next packet. An interrupt is asserted (if enabled) when this bit is set. 0 – No packet in receive FIFO. 1 – Data packet in FIFO, ready to unload.									
FIFOFULL	0 - Receive FIFO	The FIFO Full bit indicates that no more packets can be loaded into the receive FIFO. 0 – Receive FIFO is not full. 1 – Receive FIFO is full.									
OVERRUN	detect the next o	verrun event. This vent detected sind	s bit is only valid f	be loaded into the or Isochronous en t cleared.		ftware clears the	OVERRUN bit to				
DATAERROR	The Data Error bit is set when the RXPKTRDY bit is set and the data packet has a CRC or bit-stuffing error. Software clears this bit to detect the next data error. This bit is only valid for Isochronous endpoints. 0 – No data error since the bit was last cleared. 1 – Data error detected.										
FLUSHFIFO	The FLUSHFIFO bit is written with 1 to flush the receive FIFO. The FIFO pointer is reset and the RXPKTRDY bit is cleared. The FLUSHFIFO bit has no effect unless RXPKTRDY bit is set. If double-buffering is enabled, the FLUSHFIFO bit may need to be written twice to completely clear the FIFO. The FLUSHFIFO bit is cleared automatically. 0 – Normal operation. 1 – Flush the transmit FIFO and reset the RXPKTRDY bit.										
SENDSTALL	The Send STALL Handshake bit is set by software to issue a STALL handshake. Software must clear this bit to terminate the STALL condition. This bit is ignored for Isochronous endpoints. 0 – Normal operation. 1 – STALL condition.										
SENTSTALL	The Sent STALL Handshake bit is set when a STALL handshake is transmitted. Software clears this bit to detect the next STALL handshake. 0 – No STALL handshake since the bit was last cleared. 1 – STALL handshake transmitted.										
CLRDATATOG	0 – Normal opera			he endpoint data t	oggle to 0.						

CP3CN37

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

TEXAS INSTRUMENTS

www.ti.com

DMAMODE	The DMA Mode bit specifies the DMA mode. 0 – DMA mode 0. 1 – DMA mode 1.
DMAENAB	The DMA Enable bit is set to enable the receive DMA request for the endpoint. 0 – DMA request disabled. 1 – DMA request enabled.
ISO	The Isochronous Transfer bit specifies whether the Bulk/Interrupt or Isochronous transfer type is used. 0 – Bulk/Interrupt transfer type. 1 – Isochronous transfer type.
AUTOCLEAR	The Automatic Clear bit is set by software to enable a mode in which the RXPKTRDY bit is automatically cleared when data of the maximum packet size (value in RXMAXP register) has been unloaded from the receive FIFO. If a packet of less than the maximum packet size is unloaded, then the RXPKTRDY bit must be set explicitly by software.

0 – Normal mode.
 1 – Automatically clear RXPKTRDY when maximum packet size packet is unloaded from the receive FIFO.

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

Table 20-10. Host Mode Format

7	6	5	4	3		2	1	0
CLRDATATOG	RXSTALL	REQPKT	FLUSHFIFO	DATAER NAKTIME	-	ERROR	FIFOFULL	RXPKTRDY
15	14	13	12	11	1	0		8
AUTOCLEAR	AUTOREQ	DMAENAB	Reserved	DMAMODE			Reserved	
RXPKTRDY	The Receive Pac when the FIFO is 0 – No packet in 1 – Data packet i	unloaded to deto receive FIFO. n FIFO, ready to	ect the next packe unload.	et. An interrupt is	asserte	d (if enabled		
FIFOFULL	The FIFO Full bit 0 – Receive FIFC 1 – Receive FIFC) is empty.	nore packets can	be loaded into th	ne receiv	e FIFO.		
ERROR	The Error bit is so Software clears to only valid for Bull 0 – No error ever 1 – Error event d	he ERROR bit to and Interrupt er t detected since	detect the next en dpoints.	ror event. An in				
DATAERROR	The DATAERRO CRC or bit-stuffin 0 – No data error 1 – Data error de	g error. It is clea since the bit was	when the RXPK			DY bit is set	and the data	packet has a
NAKTIMEOUT	responses for lon	The NAKTIMEOUT bit (Bulk endpoint only) is set when the receive endpoint is halted following receipt of NAK responses for longer than the time set as the NAK limit in the RXINTERVAL register. Software should clear this bit to allow the endpoint to continue. 0 – No timeout.						
FLUSHFIFO	The FLUSHFIFO cleared. The FLU FLUSHFIFO bit n 0 – Normal opera 1 – Flush the rec	SHFIFO bit has nay need to be w ttion.	no effect unless R	XPKTRDY bit is pletely clear the	s set. If d			
REQPKT	The Request Pac RXPKTRDY bit is 0 – No request as 1 – Request for a	s set. sserted.		an IN transactior	n. The RI	EQPKT bit is	s cleared when	n the
RXSTALL	The Receive STA detect the next S 0 – No STALL ha 1 – STALL hands	TALL handshake	. An interrupt is a	sserted (if enable				RXSTALL bit to
CLRDATATOG	The Clear Data T 0 – Normal opera 1 – Write 1 to res	ition.		he endpoint data	a toggle	to 0.		
DMAMODE	The DMA Mode b 0 – DMA mode 0 1 – DMA mode 1	. '	MA mode.					
DMAENAB	The DMA Enable 0 – DMA request 1 – DMA request	disabled.	le the received D	MA request for t	he endpo	oint.		
AUTOREQ	The Automatic R 0 – Automatic rec 1 – Automatic rec	quest is disabled.	es whether the RE	EQPKT bit is aut	omatical	ly set when	the RXPKTRE	OY bit is cleared.
AUTOCLEAR	The Automatic C when data of the less than the max 0 – Normal mode 1 – Automatically	maximum packe kimum packet siz	t size (value in Rλ	(MAXP register) n the RXPKTRE	is unloa DY bit mu	ded from the ust be set ex	e receive FIFC plicitly by soft). If a packet of ware.

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

20.4.20 Receive Count Register (RXCOUNT)

The RXCOUNT register is a 16-bit, read-only register that indicates the current number of received data bytes in the receive FIFO. The value changes as the contents of the FIFO change, and it is only valid while the RXPKTRDY bit is set. At reset, this register is cleared to 0000h.

15	13	12	0
Reserve	ł		COUNT

COUNT

The Count field indicates how many valid bytes are in the receive FIFO.

20.4.21 Transmit Transfer Type Register (TXTYPE)

The TXTYPE register is an 8-bit, read/write register that must be written with the endpoint number to be targeted by the endpoint and the transaction protocol to use for the currently selected transmit endpoint. There is a TXTYPE register for each endpoint (except Endpoint 0). This register is only used in Host mode. At reset, this register is cleared to 00h.

7	6	5	4	3		0		
Re	Reserved		FOCOL		ENDPOINT			
ENDPOINT	T The Endpoint field specifies the target endpoint. Software must set this value to the endpoint number contained in the transmit endpoint descriptor returned during device enumeration.							
PROTOCOL	The Protocol field 00 – Reserved. 01 – Isochronous 10 – Bulk. 11 – Interrupt.		otocol for the trans	smit endpoint.				

20.4.22 Transmit Interval Register (TXINTERVAL)

The TXINTERVAL register is an 8-bit, read/write register that specifies the polling interval for the currently selected transmit endpoint, for Interrupt and Isochronous endpoints. For Bulk endpoints, this register specifies the number of frames after which the endpoint should timeout on receiving a stream of NAK responses. There is a TXINTERVAL register for each endpoint (except Endpoint 0). This register is only used in Host mode. At reset, this register is cleared to 00h.

7			0				
		INTERVAL/TIMEOUT					
INTERVAL/ TIMEOUT	The INTERVAL/TIMEOUT field specifies a number of frames. The value is interpreted differently depending on the transfer type.						
	Transfer Type	Valid Values (n)	Number of Frames				
	Interrupt	1-255	n				
	Iso	1-16	2 ⁿ⁻¹				
	Bulk	2-16 (0 or 1 disables NAK function)	2 ⁿ⁻¹				

20.4.23 Receive Transfer Type Register (RXTYPE)

The RXTYPE register is an 8-bit, read/write register that must be written with the endpoint number to be targeted by the endpoint and the transaction protocol to use for the currently selected receive endpoint. There is a RXTYPE register for each endpoint (except Endpoint 0). This register is only valid in Host mode. At reset, this register is cleared to 00h.

15	6	5	4	3	0		
Reserved		PROTOCOL			ENDPOINT		
ENDPOINT The Endpoint field specifies the target endpoint. Software must set this value to the endpoint number contained in the receive endpoint descriptor returned during device enumeration.							
PROTOCOL	The Protocol field 00 – Reserved. 01 – Isochronous 10 – Bulk. 11 – Interrupt.		otocol for the rece	ive endpoint.			

20.4.24 Receive Interval Register (RXINTERVAL)

The RXINTERVAL register is an 8-bit, read/write register that specifies the polling interval for the currently selected receive endpoint, for Interrupt and Isochronous endpoints. For Bulk endpoints, this register specifies the number of frames after which the endpoint should timeout on receiving a stream of NAK responses. There is a RXINTERVAL register for each endpoint (except Endpoint 0). This register is only valid in Host mode. At reset, this register is cleared to 00h.

7			0				
		INTERVAL/TIMEOUT					
INTERVAL/ TIMEOUT	The INTERVAL/TIMEOUT field specifies a number of frames. The value is interpreted differently depending on th transfer type.						
	Transfer Type	Valid Values (n)	Number of Frames				
	Interrupt	1-255	n				
	Iso	1-16	2 ⁿ⁻¹				
	Bulk	2-16 (0 or 1 disables NAK	2 ⁿ⁻¹				

function)

20.4.25 USB Transceiver Control Register (VCTRL)

The VCTRL register is a 16-bit, read/write register used to provide the address for accessing the USB transceiver control registers. These registers are only accessible through this register-based interface. The VCTRL register also provides data for writes to those registers. At reset, this register is cleared to 0000h.

15	14	8	7	0
DWEN	ADDRESS		DA	ТА
DATA	The Data field specifies the data loaded into the addresse	ed register when writes are per	rformed.	
ADDRESS	The Address field specifies the register address. Valid ad 01h – PTCI_SUSPCTRL. 08h – PTCI_DMA_EN_TX. 09h – PTCI_DMA_EN_RX. 0Ah – PTCI_SYSCTRL.	dresses are:		
DWEN	The Data Write Enable bit controls whether the addresse 0 – Write disabled. 1 – Write enabled.	d register is written with the da	ita.	

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

20.4.26 USB Transceiver Status Register (VSTATUS)

The VSTATUS register is an 8-bit, read-only register that returns the data in the addressed USB transceiver control register. At reset, this register is cleared to 00h.

7 VSTATUS

VSTATUS The VSTATUS field returns the data in the register addressed by the VCTRL register.

20.4.27 USB Suspend Control Register (PTCI_SUSPCTRL)

The PTCI_SUSPCTRL register is an 8-bit, write-only register which provides an interface for forcing the USB transceiver and OTG signals into Suspend mode. At reset, this register is cleared to 00h.

7	4	3	2	1	0
Rese	rved	SUSPOTG _CTRL	SUSP _CTRL	FORCE _SUSP	FORCE _SUSPOTG
FORCE_SUSPOTG	The Force Suspend OTG bit forces the USB OTG signals into Suspend mode, when selected by the SUSPOTG_CTRL bit. 0 – Normal operation. 1 – Suspend mode.				
FORCE_SUSP	The Force Suspend bit forces the USB transceiver into Suspend mode, when selected by the SUSP_CTRL bit. 0 – Normal operation. 1 – Suspend mode.				
SUSP_CTRL	The Suspend Control bit selects whether the USB logic or the FORCE_SUSP bit controls Suspend mode for the USB transceiver. 0 – USB logic. 1 – FORCE_SUSP bit.				
SUSPOTG_CTRL	The Suspend OTG bit selects whether the USB logic or the FORCE_SUSPOTG bit controls Suspend mode t USB OTG signals. 0 – USB logic. 1 – FORCE_SUSPOTG bit.			s Suspend mode for the	

20.4.28 USB System Control Register (PTCI_SYSCTRL)

The PTCI_SYSCTRL register is an 8-bit, read/write register for controlling USB DMA burst cycles on the CPU AHB bus. After reset, this register is cleared to 00h.

7	2	1	0
	Reserved	ALL_TRF	SING_INCR
SING_INCR	The Single or Incremental Transfer bit can be used to disable generation of INCR burst transfers (sequential addresses), and BUSY cycles (non-terminating pause in a burst).		gth), SEQ

0 - Normal operation.
 1 - INCR bursts, SEQ transfers, and BUSY cycles disabled.
 ALL_TRF
 The All Transfer Types bit can be used to disable generation of all burst types (INCR, INCR4, INCR8, and INCR16), SEQ transfers (sequential addresses), and BUSY cycles (non-terminating pause in a burst).
 0 - Normal operation.
 1 - All burst types, SEQ transfers, and BUSY cycles disabled.

20.4.29 USB Transmit DMA Enable Register (PTCI_DMA_EN_TX)

The PTCI_DMA_EN_TX register is an 8-bit, read/write register for enabling DMA requests for transmit endpoints 1, 2, and 3. After reset, this register is cleared to 00h.

7 3	2	1	0
Reserved	DMA_EN_TX3	DMA_EN_TX2	DMA_EN_TX1

DMA_EN_TXn The Transmit DMA Enable bits control DMA requests for the corresponding transmit endpoints. 0 – DMA request disabled. 1 – DMA request enabled.

152 USB CONTROLLER

0

20.4.30 USB Receive DMA Enable Register (PTCI_DMA_EN_RX)

The PTCI_DMA_EN_RX register is an 8-bit, read/write register for enabling DMA requests for receive endpoints 1, 2, and 3. After reset, this register is cleared to 00h.

7 3	2	1	0
Reserved	DMA_EN_RX3	DMA_EN_RX2	DMA_EN_RX1

DMA_EN_RXn The Receive DMA Enable bits control DMA requests for the corresponding receive endpoints.

0 – DMA request disabled. 1 – DMA request enabled. SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com

21 CAN MODULE

The CAN module contains a Full CAN class, CAN (Controller Area Network) serial bus interface for low/high speed applications. It supports reception and transmission of extended frames with a 29-bit identifier, standard frames with an 11-bit identifier, applications that require high speed (up to 1 MBit/s), and a low-speed CAN interface with CAN master capability. Data transfer between the CAN bus and the CPU is handled by 15 message buffers, which can be individually configured as receive or transmit buffers. Every message buffer includes a status/control register which provides information about its current status and capabilities to configure the buffer. All message buffers are able to generate an interrupt on the reception of a valid frame or the successful transmission of a frame. In addition, an interrupt can be generated on bus errors.

An incoming message is only accepted if the message identifier passes one of two acceptance filtering masks. The filtering mask can be configured to receive a single message ID for each buffer or a group of IDs for each receive buffer. One of the buffers uses a separate message filtering procedure. This provides the capability to establish a BASIC-CAN path. Remote transmission requests can be processed automatically by automatic reconfiguration to a receiver after transmission or by automated transmit scheduling upon reception. A priority decoder allows any buffer to have one of 16 transmit priorities including the highest or lowest absolute priority, for a total of 240 different transmit priorities.

A decided bit time counter (16-bit wide) is provided to support real time applications. The contents of this counter are captured into the message buffer RAM on reception or transmission. The counter can be synchronized through the CAN network. This synchronization feature allows a reset of the counter after the reception or transmission of a message in buffer 0.

The CAN module is a fast APB bus peripheral which allows single-cycle byte or word read/write access. The CPU controls the CAN module by programming the registers in the CAN register block. This includes initialization of the CAN baud rate, logic level of the CAN pins, and enable/disable of the CAN module. A set of diagnostic features, such as loopback, listen only, and error identification, support development with the CAN module and provide a sophisticated error management tool.

The CAN module implements the following features:

- CAN specification 2.0B
 - Standard data and remote frames
 - Extended data and remote frames
 - 0 to 8 bytes data length
 - Programmable bit rate up to 1 Mbit/s
 - 15 message buffers, each configurable as receive or transmit buffers
 - Message buffers are 16-bit wide dual-port RAM
 - One buffer may be used as a BASIC-CAN path
- Remote Frame support
 - 1. Automatic transmission after reception of a Remote Transmission Request (RTR) Auto receive after transmission of a RTR
 - 2. Auto receive after transmission of a RTR
- Acceptance filtering
 - 1. Two filtering capabilities: global acceptance mask and individual buffer identifiers
 - 2. One of the buffers uses an independent acceptance filtering procedure
- Programmable transmit priority
- Interrupt capability
 - One interrupt vector for all message buffers (receive/ transmit/error)
 - Each interrupt source can be enabled/disabled
- 16-bit counter with time stamp capability on successful reception or transmission of a message

- Power Save capabilities with programmable Wake-Up over the CAN bus (alternate source for the Multi-Input Wake-Up module)
- Push-pull capability of the input/output pins
- Diagnostic functions
 - Error identification
 - Loopback and listen-only features for test and initialization purposes

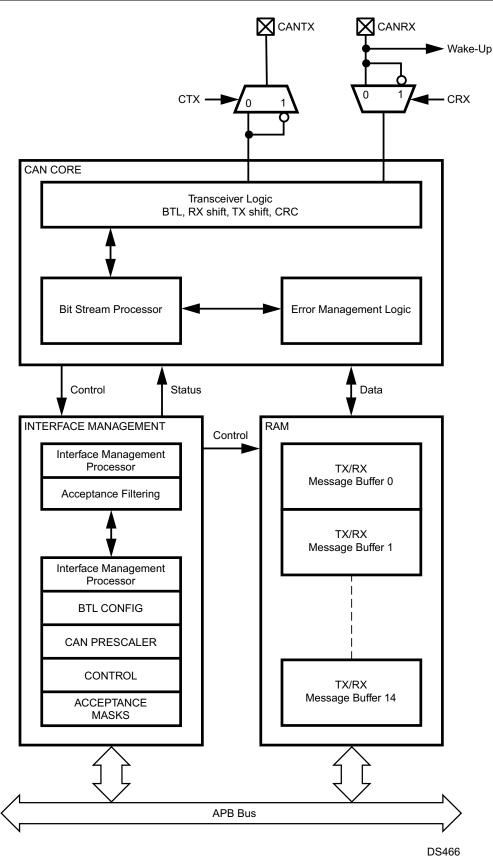
21.1 FUNCTIONAL DESCRIPTION

As shown in Figure 21-1, the CAN module consists of three blocks: the CAN core, interface management, and a dualported RAM containing the message buffers.

There are two dedicated device pins for the CAN interface, CANTX as the transmit output and CANRX as the receive input.

The CAN core implements the basic CAN protocol features such as bit-stuffing, CRC calculation/checking, and error management. It controls the transceiver logic and creates error signals according to the bus rules. In addition, it converts the data stream from the CPU (parallel data) to the serial CAN bus data.

The interface management block is divided into the register block and the interface management processor. The register block provides the CAN interface with control information from the CPU and provides the CPU with status information from the CAN module. Additionally, it generates the interrupt to the CPU.


The interface management processor is a state machine executing the CPU's transmission and reception commands and controlling the data transfer between several message buffers and the RX/TX shift registers.

15 message buffers are memory mapped into RAM to transmit and receive data through the CAN bus. Eight 16-bit registers belong to each buffer. One of the registers contains control and status information about the message buffer configuration and the current state of the buffer. The other registers are used for the message identifier, a maximum of up to eight data bytes, and the time stamp information. During the receive process, the incoming message will be stored in a hidden receive buffer until the message is valid. Then, the buffer contents will be copied into the first message buffer which accepts the ID of the received message.

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

TEXAS INSTRUMENTS

www.ti.com

21.2 BASIC CAN CONCEPTS

This section provides a generic overview of the basic concepts of the Controller Area Network (CAN).

The CAN protocol is a message-based protocol that allows a total of 2032 (2^{11} - 16) different messages in the standard format and 512 million (2^{29} - 16) different messages in the extended frame format.

Every CAN Frame is broadcast on the common bus. Each module receives every frame and filters out the frames which are not required for the module's task. For example, if a dashboard sends a request to switch on headlights, the CAN module responsible for brake lights must not process this message.

A CAN master module has the ability to set a specific bit called the "remote data request bit" (RTR) in a frame. Such a message is also called a "Remote Frame". It causes another module, either another master or a slave which accepts this remote frame, to transmit a data frame after the remote frame has been completed.

Additional modules can be added to an existing network without a configuration change. These modules can either perform completely new functions requiring new data, or process existing data to perform a new functionality.

As the CAN network is message oriented, a message can be used as a variable which is automatically updated by the controlling processor. If any module cannot process information, it can send an overload frame.

The CAN protocol allows several transmitting modules to start a transmission at the same time as soon as they detect the bus is idle. During the start of transmission, every node monitors the bus line to detect whether its message is overwritten by a message with a higher priority. As soon as a transmitting module detects another module with a higher priority accessing the bus, it stops transmitting its own frame and switches to receive mode, as shown in Figure 21-2.

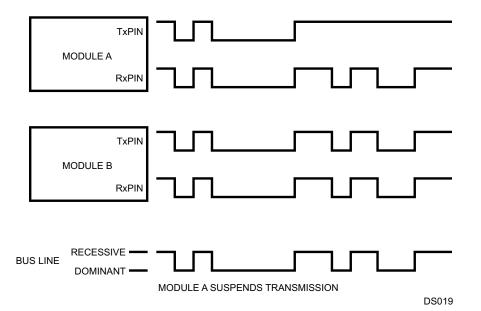


Figure 21-2. CAN Message Arbitration

If a data or remote frame loses arbitration on the bus due to a higher-prioritized data or remote frame, or if it is destroyed by an error frame, the transmitting module will automatically retransmit it until the transmission is successful or software has canceled the transmit request.

If a transmitted message loses arbitration, the CAN module will restart transmission at the next possible time with the message which has the highest internal transmit priority.

Copyright © 2007–2013, Texas Instruments Incorporated

21.2.1 CAN Frame Types

Communication via the CAN bus is basically established by means of four different frame types:

- Data Frame
- Remote Frame
- Error Frame
- Overload Frame

Data and remote frames can be used in both standard and extended frame format. If no message is being transmitted, that is, the bus is idle, the bus is kept at the "recessive" level.

Remote and data frames are non-return to zero (NRZ) coded with bit-stuffing in every bit field, which holds computable information for the interface, that is, start of frame, arbitration field, control field, data field (if present), and CRC field.

Error and overload frames are also NRZ coded, but without bit-stuffing.

After five consecutive bits of the same value (including inserted stuff bits), a stuff bit of the inverted value is inserted into the bit stream by the transmitter and deleted by the receiver. The following shows the stuffed and destuffed bit stream for consecutive ones and zeros.

Original or unstuffed bit stream	10000011111	01111100000
Stuffed bit stream (stuff bits in bold)	1000001111101	0111110000010

21.2.2 CAN Frame Fields

Data and remote frames consist of the following bit fields:

- Start of Frame (SOF)
- Arbitration Field
- Control Field
- Data Field
- CRC Field
- ACK Field
- EOF Field

Start of Frame (SOF)

The Start of Frame (SOF) indicates the beginning of data and remote frames. It consists of a single "dominant" bit. A node is only allowed to start transmission when the bus is idle. All nodes have to synchronize to the leading edge (first edge after the bus was idle) caused by the SOF of the node which starts transmission first.

Arbitration Field

The Arbitration field consists of the identifier field and the RTR (Remote Transmission Request) bit. For extended frames there is also a SRR (Substitute Remote Request) and a IDE (ID Extension) bit inserted between ID18 and ID17 of the identifier field. The value of the RTR bit is "dominant" in a data frame and "recessive" in a remote frame.

Control Field

The Control field consists of six bits. For standard frames it starts with the ID Extension bit (IDE) and a reserved bit (RB0). For extended frames, the control field starts with two reserved bits (RB1, RB0). These bits are followed by the 4- bit Data Length Code (DLC).

The CAN receiver accepts all possible combinations of the reserved bits (RB1, RB0). The transmitter must be configured to send only zeros.

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

Data Length Code (DLC)

The DLC field indicates the number of bytes in the data field. It consists of four bits. The data field can be of length zero. The admissible number of data bytes for a data frame ranges from 0 to 8.

Data Field

The Data field consists of the data to be transferred within a data frame. It can contain 0 to 8 bytes. A remote frame has no data field.

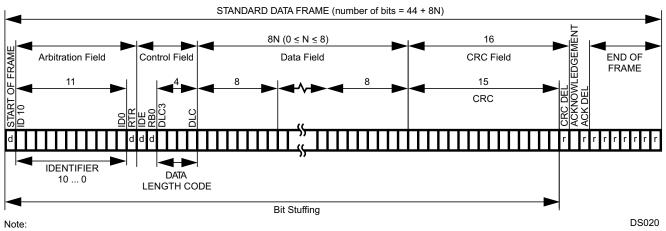
Cyclic Redundancy Check (CRC)

The CRC field consists of the CRC sequence followed by the CRC delimiter. The CRC sequence is derived by the transmitter from the modulo 2 division of the preceding bit fields, starting with the SOF up to the end of the data field, excluding stuff-bits, by the generator polynomial:

 $x^{15} + x^{14} + x^{10} + x^8 + x^7 + x^4 + x^3 + 1$

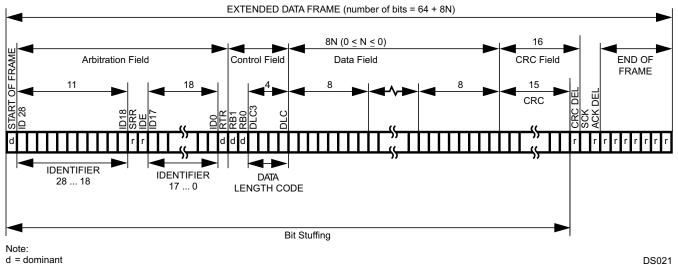
The remainder of this division is the CRC sequence transmitted over the bus. On the receiver side, the module divides all bit fields up to the CRC delimiter excluding stuff bits, and checks if the result is zero. This will then be interpreted as a valid CRC. After the CRC sequence a single "recessive" bit is transmitted as the CRC delimiter.

ACK Field


The ACK field is two bits long and contains the ACK slot and the ACK delimiter. The ACK slot is filled with a "recessive" bit by the transmitter. This bit is overwritten with a "dominant" bit by every receiver that has received a correct CRC sequence. The second bit of the ACK field is a "recessive" bit called the acknowledge delimiter.

The End of Frame field closes a data and a remote frame. It consists of seven "recessive" bits.

21.2.3 CAN Frame Formats


Data Frame

The structure of a standard data frame is shown in Figure 21-3. The structure of an extended data frame is shown in Figure 21-4.

d = dominant r = recessive

Figure 21-3. Standard Data Frame

d = dominant r = recessive

A CAN data frame consists of the following fields:

- Start of Frame (SOF)
- Arbitration Field + Extended Arbitration
- Control Field
- Data Field
- Cyclic Redundancy Check Field (CRC)
- Acknowledgment Field (ACK)
- End of Frame (EOF)

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

Remote Frame

Figure 21-5 shows the structure of a standard remote frame.

Figure 21-6 shows the structure of an extended remote frame.

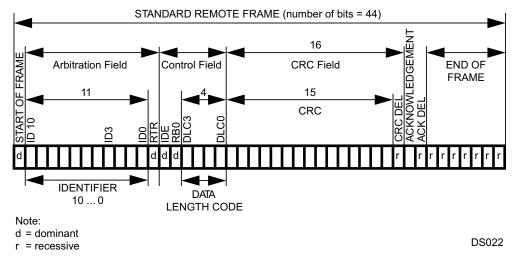


Figure 21-5. Standard Remote Frame

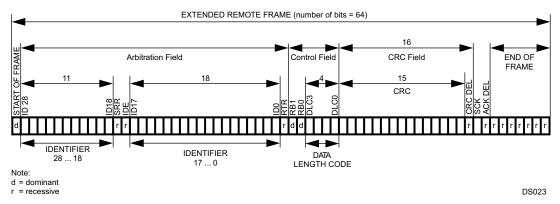
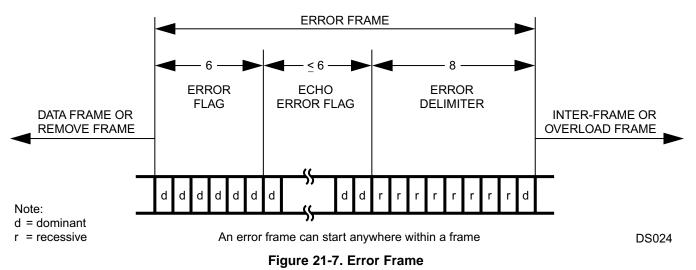


Figure 21-6. Extended Remote Frame

A remote frame is comprised of the following fields, which is the same as a data frame (see CAN Frame Fields) except for the data field, which is not present.

- Start of Frame (SOF)
- Arbitration Field + Extended Arbitration
- Control Field
- Cyclic Redundancy Check Field (CRC)
- Acknowledgment Field (ACK)
- End of Frame (EOF)

Note that the DLC must have the same value as the corresponding data frame to prevent contention on the bus. The RTR bit is "recessive".

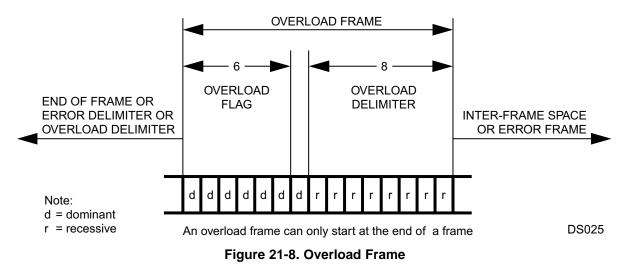

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

Texas Instruments

Error Frame

As shown in Figure 21-7, the Error Frame consists of the error flag and the error delimiter bit fields. The error flag field is built up from the various error flags of the different nodes. Therefore, its length may vary from a minimum of six bits up to a maximum of twelve bits depending on when a module has detected the error. Whenever a bit error, stuff error, form error, or acknowledgment error is detected by a node, the node starts transmission of an error flag at the next bit. If a CRC error is detected, transmission of the error flag starts at the bit following the acknowledge delimiter, unless an error flag for a previous error condition has already been started.

If a device is in the error active state, it can send a "dominant" error flag, while a error passive device is only allowed to transmit "recessive" error flags. This is done to prevent the CAN bus from getting stuck due to a local defect. For the various CAN device states, please refer to Error Types.



Overload Frame

As shown in Figure 21-8, an overload frame consists of the overload flag and the overload delimiter bit fields. The bit fields have the same length as the error frame field: six bits for the overload flag and eight bits for the delimiter. The overload frame can only be sent after the end of frame (EOF) field and in this way destroys the fixed form of the intermission field. As a result, all other nodes also detect an overload condition and start the transmission of an overload flag. After an overload flag has been transmitted, the overload frame is closed by the overload delimiter.

Note: The CAN module never initiates an overload frame due to its inability to process an incoming message. However, it is able to recognize and respond to overload frames initiated by other devices.

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

TEXAS INSTRUMENTS

Interframe Space

Data and remote frames are separated from every preceding frame (data, remote, error and overload frames) by the interframe space (see Figure 21-9). Error and overload frames are not preceded by an interframe space; they can be transmitted as soon as the condition occurs. The interframe space consists of a minimum of three bit fields depending on the error state of the node.

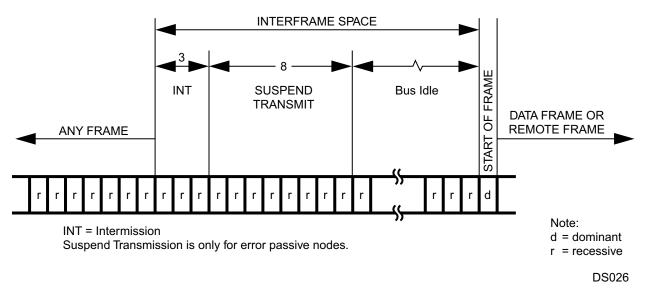


Figure 21-9. Interframe Space

Bit Error

A CAN device which is currently transmitting also monitors the bus. If the monitored bit value is different from the transmitted bit value, a bit error is detected. However, the reception of a "dominant" bit instead of a "recessive" bit during the transmission of a passive error flag, during the stuffed bit stream of the arbitration field, or during the acknowledge slot is not interpreted as a bit error.

Stuff Error

A stuff error is detected if 6 consecutive bits occur without a state change in a message field encoded with bit stuffing.

Form Error

A form error is detected, if a fixed frame bit (for example, CRC delimiter, ACK delimiter) does not have the specified value. For a receiver, a "dominant" bit during the last bit of End of Frame does not constitute a frame error.

Bit CRC Error

A CRC error is detected if the remainder from the CRC calculation of a received CRC polynomial is non-zero.

Acknowledgment Error

An acknowledgment error is detected whenever a transmitting node does not get an acknowledgment from any other node (that is, when the transmitter does not receive a "dominant" bit during the ACK frame).

Error States

The device can be in one of five states with respect to error handling (see Figure 21-10).

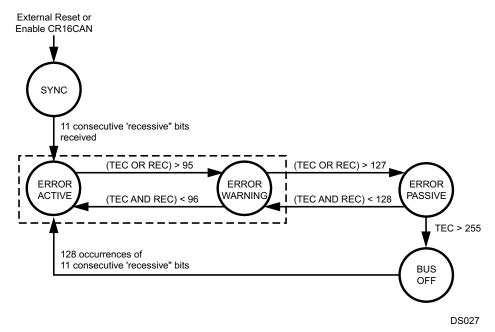


Figure 21-10. Bus States

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

Synchronize

Once the CAN module is enabled, it waits for 11 consecutive recessive bits to synchronize with the bus. After that, the CAN module becomes error active and can participate in the bus communication. This state must also be entered after waking-up the device using the Multi-Input Wake-Up feature. See System Start-Up and Multi-Input Wake-Up.

Error Active

An error active unit can participate in bus communication and may send an active ("dominant") error flag.

Error Warning

The Error Warning state is a sub-state of Error Active to indicate a heavily disturbed bus. The CAN module behaves as in Error Active mode. The device is reset into the Error Active mode if the value of both counters is less than 96.

Error Passive

An error passive unit can participate in bus communication. However, if the unit detects an error it is not allowed to send an active error flag. The unit sends only a passive ("recessive") error flag. A device is error passive when the transmit error counter or the receive error counter is greater than 127. A device becoming error passive will send an active error flag. An error passive device becomes error active again when both transmit and receive error counter are less than 128.

Bus Off

A unit that is bus off has the output drivers disabled, that is, it does not participate in any bus activity. A device is bus off when the transmit error counter is greater than 255. A bus off device will become error active again after monitoring 128×11 "recessive" bits (including bus idle) on the bus. When the device goes from "bus off" to "error active", both error counters will have a value of 0.

21.2.5 Error Counters

There are multiple mechanisms in the CAN protocol to detect errors and inhibit erroneous modules from disabling all bus activities. Each CAN module includes two error counters to perform error management. The receive error counter (REC) and the transmit error counter (TEC) are 8- bits wide, located in the 16-bit wide CANEC register. The counters are modified by the CAN module according to the rules listed in Table 21-1. This table provides an overview of the CAN error conditions and the behavior of the CAN module; for a detailed description of the error management and fault confinement rules, refer to the CAN Specification 2.0B.

If the MSB (bit 7) of the REC is set, the node is error passive and the REC will not increment any further.

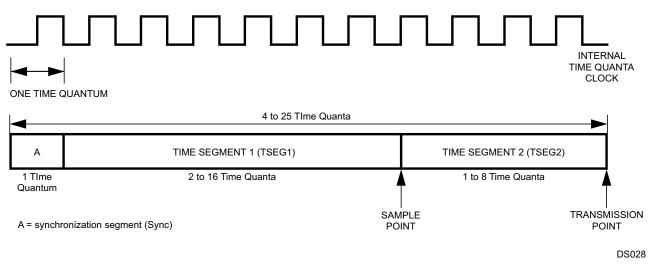
The Error counters can be read by application software as described under CAN Error Counter Register (CANEC).

Condition	Action
Receive Error Counter Conditions	
A receiver detects a bit error during sending an active error flag.	Increment by 8
A receiver detects a "dominant" bit as the first bit after sending an error flag	Increment by 8
After detecting the 14th consecutive "dominant" bit following an active error flag or overload flag, or after detecting the 8th consecutive "dominant" bit following a passive error flag. After each sequence of additional 8 consecutive "dominant" bits.	Increment by 8
Any other error condition (stuff, frame, CRC, ACK)	Increment by 1
A valid reception or transmission	Decrement by 1 unless counter is already 0
Transmit Error Counter Conditions	
A transmitter detects a bit error while sending an active error flag	Increment by 8
After detecting the 14th consecutive "dominant" bit following an active error flag or overload flag or after detecting the 8th consecutive "dominant" bit following a passive error flag. After each sequence of additional 8 consecutive 'dominant' bits.	Increment by 8
Any other error condition (stuff, frame, CRC, ACK)	Increment by 8
A valid reception or transmission	Decrement by 1 unless counter is already 0

Table 21-1. Error Counter Handling

Special error handling for the TEC counter is performed in the following situations:

- A stuff error occurs during arbitration, when a transmitted "recessive" stuff bit is received as a "dominant" bit. This does not lead to an increment of the TEC.
- An ACK-error occurs in an error passive device and no "dominant" bits are detected while sending the passive error flag. This does not lead to an increment of the TEC.
- If only one device is on the bus and this device transmits a message, it will get no acknowledgment. This will be detected as an error and the message will be repeated. When the device goes "error passive" and detects an acknowledge error, the TEC counter is not incremented. Therefore the device will not go from "error passive" to the "bus off" state due to such a condition.



21.2.6 Bit Time Logic

In the Bit Time Logic (BTL), the CAN bus speed and the Synchronization Jump Width can be configured by software. The CAN module divides a nominal bit time into three time segments: synchronization segment, time segment 1 (TSEG1), and time segment 2 (TSEG2). Figure 21-11 shows the various elements of a CAN bit time.

CAN Bit Time

The number of time quanta in a CAN bit (CAN Bit Time) ranges between 4 and 25. The sample point is positioned between TSEG1 and TSEG2 and the transmission point is positioned at the end of TSEG2.

Figure 21-11. Bit Timing

TSEG1 includes the propagation segment and the phase segment 1 as specified in the CAN specification 2.0B. The length of the time segment 1 in time quanta (tq) is defined by the TSEG1[3:0] bits.

TSEG2 represents the phase segment 2 as specified in the CAN specification 2.0B. The length of time segment 2 in time quanta (tq) is defined by the TSEG2[3:0] bits.

The Synchronization Jump Width (SJW) defines the maximum number of time quanta (tq) by which a received CAN bit can be shortened or lengthened in order to achieve resynchronization on "recessive" to "dominant" data transitions on the bus. In the CAN implementation, the SJW must be configured less or equal to TSEG1 or TSEG2, whichever is smaller.

Synchronization

A CAN device expects the transition of the data signal to be within the synchronization segment of each CAN bit time. This segment has the fixed length of one time quantum.

However, two CAN nodes never operate at exactly the same clock rate, and the bus signal may deviate from the ideal waveform due to the physical conditions of the network (bus length and load). To compensate for the various delays within a network, the sample point can be positioned by programming the length of TSEG1 and TSEG2 (see Figure 21-13).

In addition, two types of synchronization are supported. The BTL logic compares the incoming edge of a CAN bit with the internal bit timing. The internal bit timing can be adapted by either hard or soft synchronization (resynchronization).

Hard synchronization is performed at the beginning of a new frame with the falling edge on the bus while the bus is idle. This is interpreted as the SOF. It restarts the internal logic.

Soft synchronization is performed during the reception of a bit stream to lengthen or shorten the internal bit time. Depending on the phase error (e), TSEG1 may be increased or TSEG2 may be decreased by a specific value, the resynchronization jump width (SJW).

The phase error is given by the deviation of the edge to the SYNC segment, measured in CAN clocks. The value of the phase error is defined as:

- e = 0, if the edge occurs within the SYNC segment
- e > 0, if the edge occurs within TSEG1
- e < 0, if the edge occurs within TSEG2 of the previous bit

Resynchronization is performed according to the following rules:

- If the magnitude of e is less then or equal to the programmed value of SJW, resynchronization will have the same effect as hard synchronization.
- If e > SJW, TSEG1 will be lengthened by the value of the SJW (see Figure 21-12).
- If e < -SJW, TSEG2 will be shortened by the value SJW (See Figure 21-13).

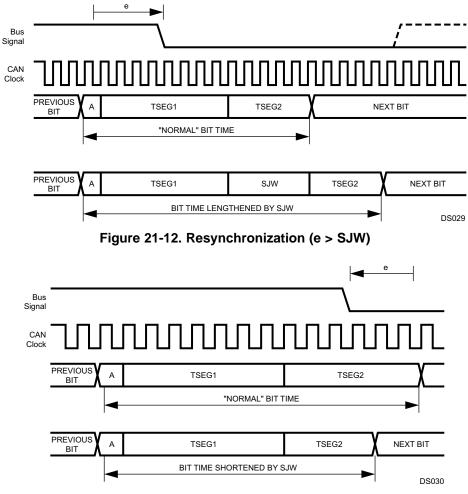


Figure 21-13. Resynchronization (e < SJW)

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

21.2.7 Clock Generator

The CAN prescaler (PSC) is shown is Figure 23-9. It divides the CKI input clock by the value defined in the CTIM register. The resulting clock is called time quanta clock and defines the length of one time quantum (tq).

Please refer to CAN Timing Register (CTIM) for a detailed description of the CTIM register.

Note: PSC is the value of the clock prescaler. TSEG1 and TSEG2 are the length of time segment 1 and 2 in time quanta.

The resulting bus clock can be calculated by the equation:

buslock = CKI / (PSC) x (1 + TSEG1 + TSEG2)

(7)

The values of PSC, TSEG1, and TSEG2 are specified by the contents of the registers PSC, TSEG1, and TSEG2 as follows:

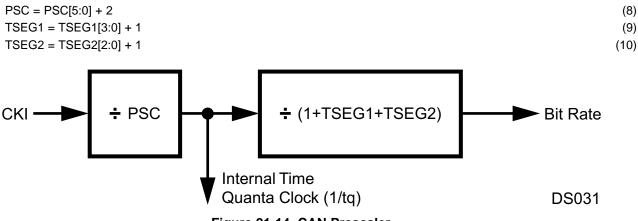
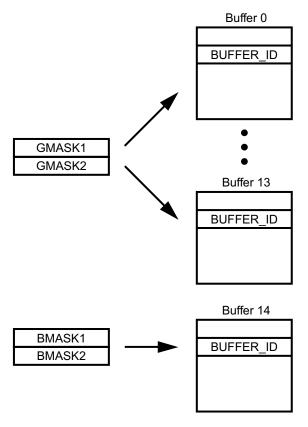


Figure 21-14. CAN Prescaler

21.3 MESSAGE TRANSFER

The CAN module has access to 15 independent message buffers, which are memory mapped in RAM. Each message buffer consists of 8 different 16-bit RAM locations and can be individually configured as a receive message buffer or as a transmit message buffer.

A dedicated acceptance filtering procedure enables software to configure each buffer to receive only a single message ID or a group of messages. One buffer uses an independent filtering procedure, which provides the possibility to establish a BASIC-CAN path.


For reception of data frame or remote frames, the CAN module follows a "receive on first match" rule which means that a given message is only received by one buffer: the first one which matches the received message ID.

The transmission of a frame can be initiated by software writing to the transmit status and priority register. An alternate way to schedule a transmission is the automatic answer to remote frames. In the latter case, the CAN module will schedule every buffer for transmission to respond to remote frames with a given identifier if the acceptance mask matches. This implies that a single remote frame is able to poll multiple matching buffers configured to respond to the triggering remote transmission request.

21.4 ACCEPTANCE FILTERING

Two 32-bit masks are used to filter unwanted messages from the CAN bus: GMASK and BMASK. Figure 21-15 shows the mask and the buffers controlled by the masks.

DS032

Figure 21-15. Acceptance Filtering

Acceptance filtering of the incoming messages for the buffers 0...13 is performed by means of a global filtering mask (GMASK) and by the buffer ID of each buffer. Acceptance filtering of incoming messages for buffer 14 is performed by a separate filtering mask (BMASK) and by the buffer ID of that buffer.

Once a received object is waiting in the hidden buffer to be copied into a buffer, the CAN module scans all buffers configured as receive buffers for a matching filtering mask. The buffers 0 to 13 are checked in ascending order beginning with buffer 0. The contents of the hidden buffer are copied into the first buffer with a matching filtering mask.

Bits holding a 1 in the global filtering mask (GMASK) can be represented as a "don't care" of the associated bit of each buffer identifier, regardless of whether the buffer identifier bit is 1 or 0.

This provides the capability to accept only a single ID for each buffer or to accept a group of IDs. The following two examples illustrate the difference.

Example 1: Acceptance of a Single Identifier

If the global mask is loaded with 00h, the acceptance filtering of an incoming message is only determined by the individual buffer ID. This means that only one message ID is accepted for each buffer.

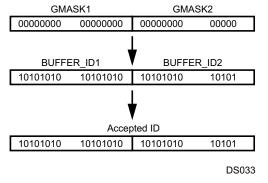
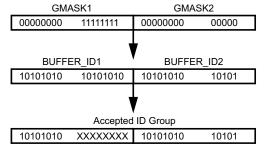



Figure 21-16. Acceptance of a Single Identifier

Example 2: Reception of an Identifier Group

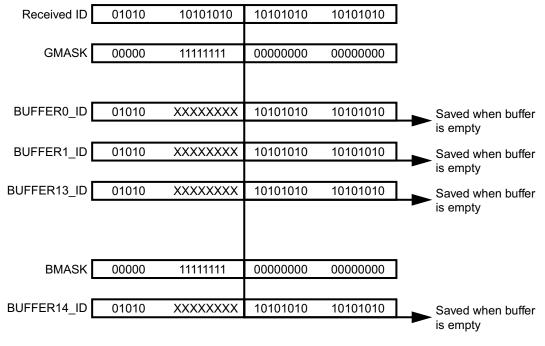
Set bits in the global mask register change the corresponding bit status within the buffer ID to "don't care" (X). Messages which match the non-"don't care" bits (the bits corresponding to clear bits in the global mask register) are accepted.

DS034

Figure 21-17. Acceptance of a Group of Identifiers

A separate filtering path is used for buffer 14. For this buffer, acceptance filtering is established by the buffer ID in conjunction with the basic filtering mask. This basic mask uses the same method as the global mask (set bits correspond to "don't care" bits in the buffer ID).

Therefore, the basic mask allows a large number of infrequent messages to be received by this buffer.


Note: If the BMASK register is equal to the GMASK register, the buffer 14 can be used the same way as the buffers 0 to 13.

The buffers 0 to 13 are scanned prior to buffer 14. Subsequently, the buffer 14 will not be checked for a matching ID when one of the buffers 0 to 13 has already received an object.

By setting the BUFFLOCK bit in the configuration register, the receiving buffer is automatically locked after reception of one valid frame. The buffer will be unlocked again after the CPU has read the data and has written RX_READY in the buffer status field. With this lock function, software has the capability to save several messages with the same identifier or same identifier group into more than one buffer. For example, a buffer with the second highest priority will receive a message if the buffer with the highest priority has already received a message and is now locked (provided that both buffers use the same acceptance filtering mask).

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

As shown in Section 25, several messages with the same ID are received while BUFFLOCK is enabled. The filtering mask of the buffers 0, 1, 13, and 14 is set to accept this message. The first incoming frame will be received by buffer 0. Because buffer 0 is now locked, the next frame will be received by buffer 1, and so on. If all matching receive buffers are full and locked, a further incoming message will not be received by any buffer.

DS035

Figure 21-18. Message Storage with BUFFLOCK Enabled

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

21.5 RECEIVE STRUCTURE

All received frames are initially buffered in a hidden receive buffer until the frame is valid. (The validation point for a received message is the next-to-last bit of the EOF.) The received identifier is then compared to every buffer ID together with the respective mask and the status. As soon as the validation point is reached, the whole contents of the hidden buffer are copied into the matching message buffer as shown in Figure 21-19.

Note: The hidden receive buffer must not be accessed by the CPU.

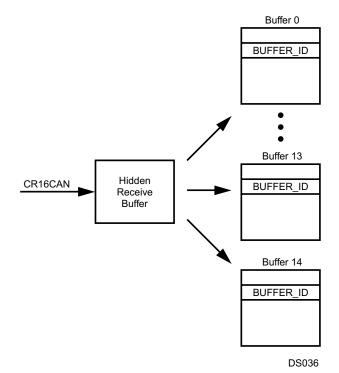


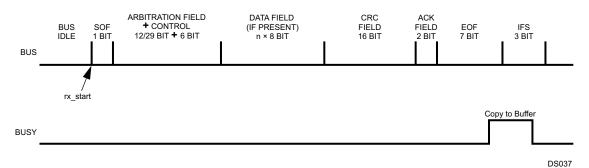
Figure 21-19. Receive Buffer

The following section gives an overview of the reception of the different types of frames.

The received data frame is stored in the first matching receive buffer beginning with buffer 0. For example, if the message is accepted by buffer 5, then at the time the message will be copied, the RX request is cleared and the CAN module will not try to match the frame to any subsequent buffer.

All contents of the hidden receive buffer are always copied into the respective receive buffer. This includes the received message ID as well as the received Data Length Code (DLC); therefore when some mask bits are set to don't care, the ID field will get the received message ID which could be different from the previous ID. The DLC of the receiving buffer will be updated by the DLC of the received frame. The DLC of the received message is not compared with the DLC already present in the CNSTAT register of the message buffer. This implies that the DLC code of the CNSTAT register indicates how may data bytes actually belong to the latest received message.

The remote frames are handled by the CAN interface in two different ways. In the first method, remote frames can be received like data frames by configuring the buffer to be RX_READY and setting the ID bits including the RTR bit. In that case, the same procedure applies as described for Data Frames. In the second method, a remote frame can trigger one or more message buffer to transmit a data frame upon reception. This procedure is described under To Answer Remote Frames in Section 21.6.



SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com

21.5.1 Receive Timing

As soon as the CAN module receives a "dominant" bit on the CAN bus, the receive process is started. The received ID and data will be stored in the hidden receive buffer if the global or basic acceptance filtering matches. After the reception of the data, CAN module tries to match the buffer ID of buffer 0...14. The data will be copied into the buffer after the reception of the 6th EOF bit as a message is valid at this time. The copy process of every frame, regardless of the length, takes at least 17 CKI cycles (see also CPU Access to CAN Registers/Memory). Figure 21-20 shows the receive timing.

To indicate that a frame is waiting in the hidden buffer, the BUSY bit (ST[0]) of the selected buffer is set during the copy procedure. The BUSY bit will be cleared by the CAN module immediately after the data bytes are copied into the buffer. After the copy process is finished, the CAN module changes the status field to RX_FULL. In turn, the CPU should change the status field to RX_READY when the data is processed. When a new object has been received by the same buffer, before the CPU changed the status to RX_READY, the CAN module will change the status to RX_OVERRUN to indicate that at least one frame has been overwritten by a new one. Table 21-2 summarizes the current status and the resulting update from the CAN module.

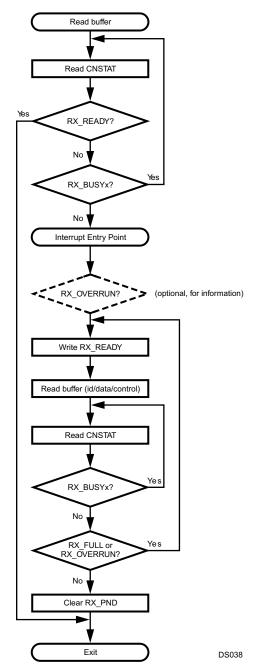
Current Status	Resulting Status
RX_READY	RX_FULL
RX_NOT_ACTIVE	RX_NOT_ACTIVE
RX_FULL	RX_OVERRUN

Table 21-2. Writing to Buffer Status Code During RX_BUSY

During the assertion of the BUSY bit, all writes to the receiving buffer are disabled with the exception of the status field. If the status is changed while the BUSY bit is asserted, the status is updated by the CAN module as shown in Table 21-2.

The buffer states are indicated and controlled by the ST[3:0] bits in the CNSTAT register (see Buffer Status/Control Register (CNSTAT)). The various receive buffer states are explained in RX Buffer States.

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

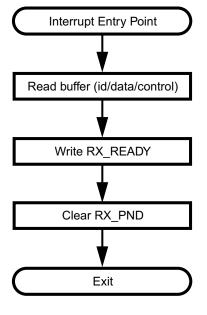

TEXAS INSTRUMENTS

21.5.2 Receive Procedure

Software executes the following procedure to initialize a message buffer for the reception of a CAN message.

- 1. Configure the receive masks (GMASK or BMASK).
- 2. Configure the buffer ID.
- 3. Configure the message buffer status as RX_READY.

To read the out of a received message, the CPU must execute the following steps (see Equation 22):


The first step is only applicable if polling is used to get the status of the receive buffer. It can be deleted for an interrupt driven receive routine.

1. Read the status (CNSTAT) of the receive buffer. If the status is RX_READY, no was the message received, so exit. If the status is RX_BUSY, the copy process from hidden receive buffer is not completed yet, so read CNSTAT again.

If a buffer is configured to RX_READY and its interrupt is enabled, it will generate an interrupt as soon as the buffer has received a message and entered the RX_FULL state (see also Section 21.7). In that case, the procedure described below must be followed.

- 2. Read the status to determine if a new message has overwritten the one originally received which triggered the interrupt.
- 3. Write RX_READY into CNSTAT.
- 4. Read the ID/data and object control (DLC/RTR) from the message buffer.
- 5. Read the buffer status again and check it is not RX_BUSYx. If it is, repeat this step until RX_BUSYx has gone away.
- 6. If the buffer status is RX_FULL or RX_OVERRUN, one or more messages were copied. In that case, start over with step 2.
- 7. If status is still RX_READY (as set by the CPU at step 2), clear interrupt pending bit and exit.

When the BUFFLOCK function is enabled (see Figure 21-22), it is not necessary to check for new messages received during the read process from the buffer, as this buffer is locked after the reception of the first valid frame. A read from a locked receive buffer can be performed as shown in Equation 22.

DS039

Figure 21-22. Buffer Read Routine (BUFFLOCK Enabled)

For simplicity only the applicable interrupt routine is shown:

- 1. Read the ID/data and object control (DLC/RTR) from the message buffer.
- 2. Write RX_READY into CNSTAT.
- 3. Clear interrupt pending bit and exit.

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com

21.5.3 RX Buffer States

As shown in Figure 21-22, a receive procedure starts as soon as software has set the buffer from the RX_NOT_ACTIVE state into the RX_READY state. The status section of CNSTAT register is set from 0000b to 0010b. When a message is received, the buffer will be RX_BUSYx during the copy process from the hidden receive buffer into the message buffer. Afterwards this buffer is RX_FULL. The CPU can then read the buffer data and either reset the buffer status to RX_READY or receive a new frame before the CPU reads the buffer. In the second case, the buffer state will automatically change to RX_OVERRUN to indicate that at least one message was lost. During the copy process the buffer will again be RX_BUSYx for a short time, but in this case the CNSTAT status section will be 0101b, as the buffer was RX_FULL (0100b) before. After finally reading the last received message, the CPU can reset the buffer to RX_READY.

21.6 TRANSMIT STRUCTURE

To transmit a CAN message, software must configure the message buffer by changing the buffer status to TX_NOT_ACTIVE. The buffer is configured for transmission if the ST[3] bit of the buffer status code (CNSTAT) is set. In TX_NOT_ACTIVE status, the buffer is ready to receive data from the CPU. After receiving all transmission data (ID, data bytes, DLC, and PRI), the CPU can start the transmission by writing TX_ONCE into the buffer status register. During the transmission, the status of the buffer is TX_BUSYx. After successful transmission, the CAN module will reset the buffer status to TX_NOT_ACTIVE. If the transmission process fails, the buffer condition will remain TX_BUSYx for retransmission until the frame was successfully transmitted or the CPU has canceled the transmission request.

To Send a Remote Frame (Remote Transmission Request) to other CAN nodes, software sets the RTR bit of the message identifier (see Section 21.10.5) and changes the status of the message buffer to TX_ONCE. After this remote frame has been transmitted successfully, this message buffer will automatically enter the RX_READY state and is ready to receive the appropriate answer. Note that the mask bits RTR/XRTR need to be set to receive a data frame (RTR = 0) in a buffer which was configured to transmit a remote frame (RTR = 1).

To answer Remote Frames, the CPU writes TX_RTR in the buffer status register, which causes the buffer to wait for a remote frame. When a remote frame passes the acceptance filtering mask of one or more buffers, the buffer status will change to TX_ONCE_RTR, the contents of the buffer will be transmitted, and afterwards the CAN module will write TX_RTR in the status code register again.

If the CPU writes TX_ONCE_RTR into the buffer status, the contents of the buffer will be transmitted, and the successful transmission the buffer goes into the "wait for Remote Frame" condition TX_RTR.

21.6.1 Transmit Scheduling

After writing TX_ONCE into the buffer status, the transmission process begins and the BUSY bit is set. As soon as a buffer gets the TX_BUSY status, the buffer is no longer accessible by the CPU except for the ST[3:1] bits of the CNSTAT register. Starting with the beginning of the CRC field of the current frame, the CAN module looks for another buffer transmit request and selects the buffer with the highest priority for the next transmission by changing the buffer state from TX_ONCE to TX_BUSY. This transmit request can be canceled by the CPU or can be overwritten by another transmit request of a buffer with a higher priority as long as the transmission of the next frame has not yet started. This means that between the beginning of the CRC field of the current frame and the transmission, are in the BUSY status. To cancel the transmit request of the next frame, the CPU must change the buffer state to TX_NOT_ACTIVE. When the transmit request has been overwritten by another request of a higher priority buffer, the CAN module changes the buffer state from TX_ONCE. Therefore, the transmit request remains pending.Figure 21-23 further illustrates the transmit timing.

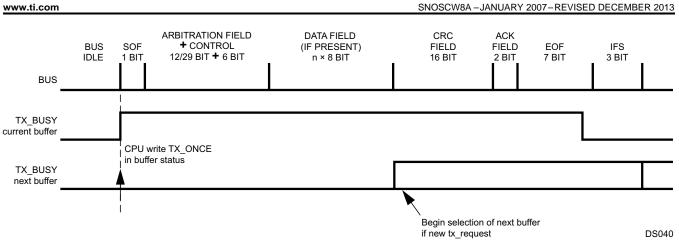


Figure 21-23. Data Transmission

If the transmit process fails or the arbitration is lost, the transmission process will be stopped and will continue after the interrupting reception or the error signaling has finished (see Figure 21-23). In that case, a new buffer select follows and the TX process is executed again.

Note: The canceled message can be delayed by a TX request of a buffer with a higher priority. While TX_BUSY is high, software cannot change the contents of the message buffer object. In all cases, writing to the BUSY bit will be ignored.

21.6.2 Transmit Priority

The CAN module is able to generate a stream of scheduled messages without releasing the bus between two messages so that an optimized performance can be achieved. It will arbitrate for the bus immediately after sending the previous message and will only release the bus due to a lost arbitration.

If more than one buffer is scheduled for transmission, the priority is built by the message buffer number and the priority code in the CNSTAT register. The 8-bit value of the priority is combined by the 4-bit TXPRI value and the 4-bit buffer number (0...14) as shown below. The lowest resulting number results in the highest transmit priority.

7	4	3		0
TXPRI			BUFFER#	

Table 21-3 shows the transmit priority configuration if the priority is TXPRI = 0 for all transmit buffers:

Table 21-3. Transmit Priority (TXPRI = 0)

TXPRI	Buffer Number	PRI	TX Priority
0	0	0	Highest
0	1	1	
•	•		•
	•	•	•
0	14	14	Lowest

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

STRUMENTS

Table 21-4 shows the transmit priority configuration if TXPRI is different from the buffer number:

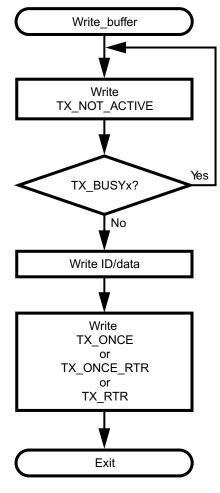
TXPRI	Buffer Number	PRI	TX Priority
14	0	224	Lowest
13	1	209	
12	2	194	
11	3	179	
10	4	164	
9	5	149	
8	6	134	
7	7	119	
6	8	104	
5	9	89	
4	10	74	
3	11	59	
2	12	44	
1	13	29	
0	14	14	Highest

 Table 21-4. Transmit Priority (TXPRI not 0)

Note: If two buffers have the same priority (PRI), the buffer with the lower buffer number will have the higher priority.

21.6.3 Transmit Procedure

The transmission of a CAN message must be executed as follows (see also Figure 21-24):


- 1. Configure the CNSTAT status field as TX_NOT_ACTIVE. If the status is TX_BUSY, a previous transmit request is still pending and software has no access to the data contents of the buffer. In that case, software may choose to wait until the buffer becomes available again as shown. Other options are to exit from the update routine until the buffer has been transmitted with an interrupt generated, or the transmission is aborted by an error.
- 2. Load buffer identifier and data registers. (For remote frames the RTR bit of the identifier needs to be set and loading data bytes can be omitted.)
- 3. Configure the CNSTAT status field to the desired value:
 - TX_ONCE to trigger the transmission process of a single frame
 - TX_ONCE_RTR to trigger the transmission of a single data frame and then wait for a received remote frame to trigger consecutive data frames
 - TX_RTR waits for a remote frame to trigger the transmission of a data frame.

Writing TX_ONCE or TX_ONCE_RTR in the CNSTAT status field will set the internal transmit request for the CAN module.

If a buffer is configured as TX_RTR and a remote frame is received, the data contents of the addressed buffer will be transmitted automatically without further CPU activity.

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

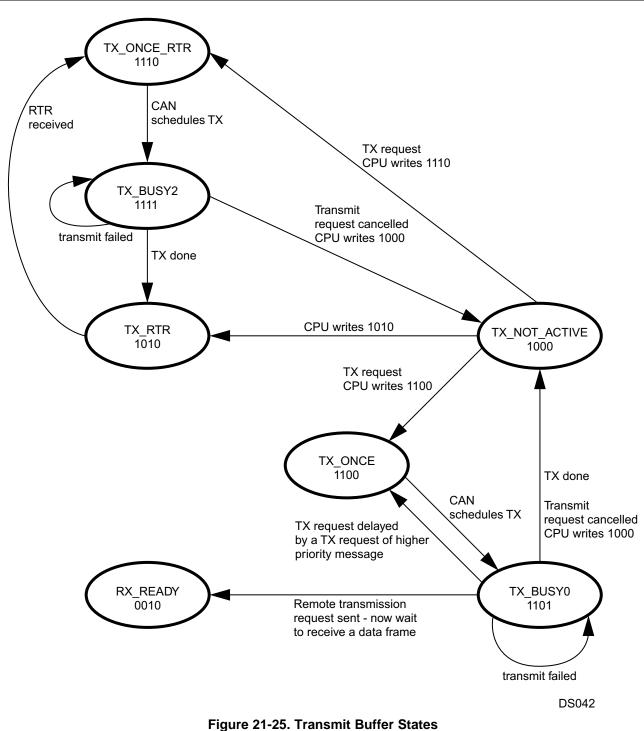
DS041 Figure 21-24. Buffer Write Routine

21.6.4 TX Buffer States

The transmission process can be started after software has loaded the buffer registers (data, ID, DLC, PRI) and set the buffer status from TX_NOT_ACTIVE to TX_ONCE, TX_RTR, or TX_ONCE_RTR.

When the CPU writes TX_ONCE, the buffer will be TX_BUSY as soon as the CAN module has scheduled this buffer for the next transmission. After the frame could be successfully transmitted, the buffer status will be automatically reset to TX_NOT_ACTIVE when a data frame was transmitted or to RX_READY when a remote frame was transmitted.

If the CPU configures the message buffer to TX_ONCE_RTR, it will transmit its data contents. During the transmission, the buffer state is 1111b as the CPU wrote 1110b into the status section of the CNSTAT register. After the successful transmission, the buffer enters the TX_RTR state and waits for a remote frame. When it receives a remote frame, it will go back into the TX_ONCE_RTR state, transmit its data bytes, and return to TX_RTR. If the CPU writes 1010b into the buffer status section, it will only enter the TX_RTR state, but it will not send its data bytes before it waits for a remote frame. Figure 21-25 illustrates the possible transmit buffer states.


CP3CN37

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

NSTRUMENTS

EXAS

21.7 INTERRUPTS

The CAN module has one dedicated ICU interrupt vector for all interrupt conditions. In addition, the data frame receive event is an input to the MIWU (see Section 17). The interrupt process can be initiated from the following sources.

CAN data transfer:

- Reception of a valid data frame in the buffer. (Buffer state changes from RX_READY to RX_FULL or RX_OVERRUN.)
- Successful transmission of a data frame. (Buffer state changes from TX_ONCE to TX_NOT_ACTIVE or RX_READY.)
- Successful response to a remote frame. (Buffer state changes from TX_ONCE_RTR to TX_RTR.)
- Transmit scheduling. (Buffer state changes from TX_RTR to TX_ONCE_RTR.)

CAN error conditions:

• Detection of an CAN error. (The CEIPND bit in the CIPND register will be set as well as the corresponding bits in the error diagnostic register CEDIAG.)

The receive/transmit interrupt access to every message buffer can be individually enabled/disabled in the CIEN register. The pending flags of the message buffer are located in the CIPND register (read only) and can be cleared by resetting the flags in the CICLR registers.

21.7.1 Highest Priority Interrupt Code

To reduce the decoding time for the CIPND register, the buffer interrupt request with the highest priority is placed as interrupt status code into the IST[3:0] section of the CSTPND register.

Each of the buffer interrupts as well as the error interrupt can be individually enabled or disabled in the CAN Interrupt Enable register (CIEN). As soon as an interrupt condition occurs, every interrupt request is indicated by a flag in the CAN Interrupt Pending register (CIPND). When the interrupt code logic for the present highest priority interrupt request is enabled, this interrupt will be translated into the IST3:0 bits of the CAN Status Pending register (CSTPND). An interrupt request can be cleared by setting the corresponding bit in the CAN Interrupt Clear register (CICLR).

Figure 21-26 shows the CAN interrupt management.

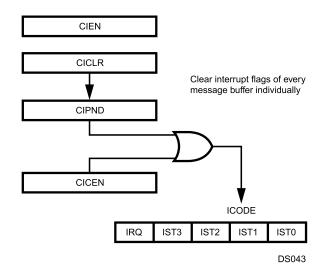


Figure 21-26. Interrupt Management

The highest priority interrupt source is translated into the bits IRQ and IST3:0 as shown in Table 21-5.

TEXAS INSTRUMENTS

www.ti.com

CAN Interrupt Request	IRQ	IST3	IST2	IST1	IST0								
No Request	0	0	0	0	0								
Error Interrupt	1	0	0	0	0								
Buffer 0	1	0	0	0	1								
Buffer 1	1	0	0	1	0								
Buffer 2	1	0	0	1	1								
Buffer 3	1	0	1	0	0								
Buffer 4	1	0	1	0	1								
Buffer 5	1	0	1	1	0								
Buffer 6	1	0	1	1	1								
Buffer 7	1	1	0	0	0								
Buffer 8	1	1	0	0	1								
Buffer 9	1	1	0	1	0								
Buffer 10	1	1	0	1	1								
Buffer 11	1	1	1	0	0								
Buffer 12	1	1	1	0	1								
Buffer 13	1	1	1	1	0								
Buffer 14	1	1	1	1	1								

Table 21-5. Highest Priority Interrupt Code (ICEN=FFFF)

21.7.2 Usage Hints

The interrupt code IST3:0 can be used within the interrupt handler as a displacement to jump to the relevant subroutine.

The CAN Interrupt Code Enable (CICEN) register is used in the CAN interrupt handler if software is servicing all receive buffer interrupts first, followed by all transmit buffer interrupts. In this case, software can first enable only receive buffer interrupts to be coded, then scan and service all pending interrupt requests in the order of their priority. After processing all the receive interrupts, software changes the CICEN register to disable all receive buffers and enable all transmit buffers, then services all pending transmit buffer interrupt requests according to their priorities.

21.8 TIME STAMP COUNTER

The CAN module features a free running 16-bit timer (CTMR) incrementing every bit time recognized on the CAN bus. The value of this timer during the ACK slot is captured into the TSTP register of a message buffer after a successful transmission or reception of a message. Figure 21-27 shows a simplified block diagram of the Time Stamp counter.

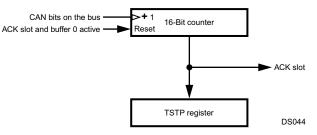


Figure 21-27. Time Stamp Counter

The timer can be synchronized over the CAN network by receiving or transmitting a message to or from buffer 0. In this case, the TSTP register of buffer 0 captures the current CTMR value during the ACK slot of a message (as above), and then the CTMR is reset to 0000b. Synchronization can be enabled or disabled using the CGCR.TSTPEN bit.

21.9 MEMORY ORGANIZATION

The CAN module occupies 144 words in the memory address space. This space is organized as 15 banks of 8 words per bank (plus one reserved bank) for the message buffers and 14 words (plus 2 reserved words) for control and status.

21.9.1 CPU Access to CAN Registers/Memory

All memory locations occupied by the message buffers are shared by the CPU and CAN module (dualported RAM). The CAN module and the CPU normally have single-cycle access to this memory. However, if an access contention occurs, the access to the memory is blocked every cycle until the contention is resolved. This internal access arbitration is transparent to software.

Both word and byte access to the buffer RAM are allowed. If a buffer is busy during the reception of an object (copy process from the hidden receive buffer) or is scheduled for transmission, the CPU has no write access to the data contents of the buffer. Write to the status/control byte and read access to the whole buffer is always enabled.

All configuration and status registers can either be accessed by the CAN module or the CPU only. These registers provide single-cycle word and byte access without any potential wait state.

All register descriptions within the next sections have the following layout:

15	0
Bit/Field Names	
Reset Value	
CPU Access (R = read only, W = write only, R/W = read/write)	

21.9.2 Message Buffer Organization

The message buffers are the communication interfaces between CAN and the CPU for the transmission and the reception of CAN frames. There are 15 message buffers located at fixed addresses in the RAM location. As shown in Table 21-6, each buffer consists of two words reserved for the identifiers, 4 words reserved for up to eight CAN data bytes, one word reserved for the time stamp, and one word for data length code, transmit priority code, and the buffer status codes.

Table 21-6. Message Buffer Map

Address	Buffer Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0E F0XEh	ID1		XI[28:18]/ID[10:0]									SRR / RTR	IDE)	5]		
0E F0XCh	ID0		XI[14:0]									RTR					
0E F0XAh	DATA0		Data1[7:0]							Data2[7:0]							
0E F0X8h	DATA1				Data	3[7:0]				Data4[7:0]							
0E F0X6h	DATA2				Data	5[7:0]				Data6[7:0]							
0E F0X4h	DATA3		Data7[7:0]							Data8[7:0]							
0E F0X2h	TSTP		TSTP[15:0]														
0E F0X0h	CNSTAT		DLC Reserved							PRI ST					т		

www.ti.com

21.10 CAN CONTROLLER REGISTERS

Table 21-7 lists the CAN module registers.

Name	Address	Description
CNSTAT	See Table 21-6	CAN Buffer Status/ Control Register
CGCR	FF BE00h	CAN Global Configuration Register
CTIM	FF BE04h	CAN Timing Register
GMSKX	FF BE08h	Global Mask Register
GMSKB	FF BE0Ch	Global Mask Register
BMSKX	FF BE10h	Basic Mask Register
BMSKB	FF BE14h	Basic Mask Register
CIEN	FF BE18h	CAN Interrupt Enable Register
CIPND	FF BE1Ch	CAN Interrupt Pending Register
CICLR	FF BE20h	CAN Interrupt Clear Register
CICEN	FF BE24h	CAN Interrupt Code Enable Register
CSTPND	FF BE28h	CAN Status Pending Register
CANEC	FF BE2Ch	CAN Error Counter Register
CEDIAG	FF BE30h	CAN Error Diagnostic Register
CTMR	FF BE34h	CAN Timer Register

21.10.1 Buffer Status/Control Register (CNSTAT)

The buffer status (ST), the buffer priority (PRI), and the data length code (DLC) are controlled by manipulating the contents of the Buffer Status/Control Register (CNSTAT). The CPU and CAN module have access to this register.

15	12 11	8 7	4	3	0
DLC	Res	erved	PRI	ST	
		0			
		R/W			

The Buffer Status field contains the status information of the buffer as shown in Table 21-8. This field can be modified by the CAN module. The ST0 bits acts as a buffer busy indication. When the BUSY bit is set, any write access to the buffer is disabled with the exception of the lower byte of the CNSTAT register. The CAN module sets this bit if the buffer data is currently copied from the hidden buffer or if a message is scheduled for transmission or is currently transmitting. The CAN module always clears this bit on a status update.

ST3 (DIR)	ST2	ST1	ST0 (BUSY)	Buffer Status
0	0	0	0	RX_NOT_ACTIVE
0	0	0	1	Reserved for RX_BUSY. (This condition indicates that software wrote RX_NOT_ACTIVE to a buffer when the data copy process is still active.)
0	0	1	0	RX_READY
0	0	1	1	RX_BUSY0 (Indicates data is being copied for the first time RX_READY \rightarrow RX_BUSY0.)
0	1	0	0	RX_FULL
0	1	0	1	RX_BUSY1 (Indicates data is being copied for the second time RX_FULL \rightarrow RX_BUSY1.)
0	1	1	0	RX_OVERRUN
0	1	1	1	RX_BUSY2 (Indicates data is being copied for the third or subsequent times RX_OVERRUN \rightarrow RX_BUSY2.)
1	0	0	0	TX_NOT_ACTIVE

Table 21-8. Buffer Status Section of the CNSTAT Register

ST

RUMENTS

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

1	0	0	1	Reserved for TX_BUSY. (This state indicates that software wrote TX_NOT_ACTIVE to a transmit buffer which is scheduled for transmission or is currently transmitting.)
1	1	0	0	TX_ONCE
1	1	0	1	TX_BUSY0 (Indicates that a buffer is scheduled for transmission or is actively transmitting; it can be due to one of two cases: a message is pending for transmission or is currently transmitting, or an automated answer is pending for transmission or is currently transmitting.)
1	0	1	0	TX_RTR (Automatic response to a remote frame.)
1	0	1	1	Reserved for TX_BUSY1. (This condition does not occur.)
1	1	1	0	TX_ONCE_RTR (Changes to TX_RTR after transmission.)
1	1	1	1	TX_BUSY2 (Indicates that a buffer is scheduled for transmission or is actively transmitting; it can be due to one of two cases: a message is pending for transmission or is currently transmitting, or an automated answer is pending for transmission or is currently transmitting.)

Table 21-8. Buffer Status Section of the CNSTAT Register (continued)

PRI DLC The Transmit Priority Code field holds the software-defined transmit priority code for the message buffer.

The Data Length Code field determines the number of data bytes within a received/transmitted frame. For transmission, these bits need to be set according to the number of data bytes to be transmitted. For reception, these bits indicate the number of valid received data bytes available in the message buffer. Table 56 shows the possible bit combinations for DLC3:0 for data lengths from 0 to 8 bytes.

DLC	Number of Data Bytes
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8

Note: The maximum number of data bytes received/transmitted is 8, even if the DLC field is set to a value greater than 8. Therefore, if the data length code is greater or equal to eight bytes, the DLC field is ignored.

21.10.2 Storage of Standard Messages

During the processing of standard frames, the Extended-Identifier (IDE) bit is clear. The ID1[3:0] and ID0[15:0] bits are "don't care" bits. A standard frame with eight data bytes is shown in Table 21-10.

IDE	The Identifier Extension bit determines whether the message is a standard frame or an extended frame. 0 – Message is a standard frame using 11 identifier bits. 1 – Message is an extended frame.
RTR	The Remote Transmission Request bit indicates whether the message is a data frame or a remote frame. 0 – Message is a data frame. 1 – Message is a remote frame.
ID	The ID field is used for the 11 standard frame identifier bits.

www.ti.com

STRUMENTS

XAS

				Iusi		0. 01	induit	a i run				,					
Address	Buffer Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0E F0XEh	ID1						ID[10:0]]					RTR	IDE	D	on't Ca	re
0E F0XCh	ID0		Don't Care														
0E F0XAh	DATA0		Data1[7:0]						Data2[7:0]								
0E F0X8h	DATA1				Data	3[7:0]				Data4[7:0]							
0E F0X6h	DATA2				Data	5[7:0]				Data6[7:0]							
0E F0X4h	DATA3		Data7[7:0]							Data8[7:0]							
0E F0X2h	TSTP		TSTP[15:0]														
0E F0X0h	CNSTAT		D	LC			Rese	erved		PRI ST							

Table 21-10. Standard Frame with 8 Data Bytes

21.10.3 Storage of Messages with Less Than 8 Data Bytes

The data bytes that are not used for data transfer are "don't cares". If the object is transmitted, the data within these bytes will be ignored. If the object is received, the data within these bytes will be overwritten with invalid data.

21.10.4 Storage of Extended Messages

If the IDE bit is set, the buffer handles extended frames. The storage of the extended ID follows the descriptions in Table 21-11. The SRR bit is at the bit position of the RTR bit for standard frame and needs to be transmitted as 1.

Address	Buffer Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0E F0XEh	ID1		ID[28:18] SRR IDE							I	D17:15]					
0E F0XCh	ID0		ID[14:0] RTR							RTR							
0E F0XAh	DATA0		Data1[7:0] Data2[7:0]														
0E F0X8h	DATA1		Data3[7:0]						Data4[7:0]								
0E F0X6h	DATA2		Data5[7:0] Data6[7:0]														
0E F0X4h	DATA3		Data7[7:0] Data8[7:0]														
0E F0X2h	TSTP		TSTP[15:0]														
0E F0X0h	CNSTAT		DI	_C			Rese	erved		PRI				ST			

Table 21-11. Extended Messages with 8 Data Bytes

SRR	The Substitute Remote Request bit replaces the RTR bit used in standard frames at this bit position. The SRR bit needs to be set by software if the buffer is configured to transmit a message with an extended identifier. It will be received as monitored on the CAN bus.
IDE	The Identifier Extension bit determines whether the message is a standard frame or an extended frame. 0 – Message is a standard frame using 11 identifier bits. 1 – Message is an extended frame.
RTR	The Remote Transmission Request bit indicates whether the message is a data frame or a remote frame. 0 – Message is a data frame. 1 – Message is a remote frame.
ID	The ID field is used to build the 29-bit identifier of an extended frame.

21.10.5 Storage of Remote Messages

During remote frame transfer, the buffer registers DATA0– DATA3 are "don't cares". If a remote frame is transmitted, the contents of these registers are ignored. If a remote frame is received, the contents of these registers will be overwritten with invalid data. The structure of a message buffer set up for a remote frame with extended identifier is shown in Table 21-12.

www.ti.com

			Table 21-12. Extended Remote Traine													
Address	Buffer Register	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1								1	0				
0E F0XEh	ID1		ID[28:18] SRR IDE ID17:15]]					
0E F0XCh	ID0		ID[14:0] RTR													
0E F0XAh	DATA0															
0E F0X8h	DATA1		Don't Care Don't Care													
0E F0X6h	DATA2															
0E F0X4h	DATA3															
0E F0X2h	TSTP								TSTP	[15:0]						
0E F0X0h	CNSTAT		D	LC			Rese	erved			Р	RI		S	т	

Table 21-12. Extended Remote Frame

SRR The Substitute Remote Request bit replaces the RTR bit used in standard frames at this bit position. The SRR bit needs to be set by software.

- IDE
 The Identifier Extension bit determines whether the message is a standard frame or an extended frame.

 0 Message is a standard frame using 11 identifier bits.
 1 Message is an extended frame.

 RTR
 The Remote Transmission Request bit indicates whether the message is a data frame or a remote frame.
 - 0 Message is a data frame.
 1 Message is a remote frame.

ID The ID field is used to build the 29-bit identifier of an extended frame. The ID[28:18] field is used for the 11 standard frame identifier bits.

21.10.6 CAN Global Configuration Register (CGCR)

The CAN Global Configuration Register (CGCR) is a 16-bit wide register used to:

- Enable/disable the CAN module.
- Configure the BUFFLOCK function for the message buffer 0..14.
- Enable/disable the time stamp synchronization.
- Set the logic levels of the CAN Input/Output pins, CANRX and CANTX.
- Choose the data storage direction (DDIR).
- Select the error interrupt type (EIT).
- Enable/disable diagnostic functions.

TEXAS INSTRUMENTS

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

	6	5		4	3		2		1	0
IGNACK	LO	DDIR	T	STPEN	BUFFLO	CK	CRX	C	СТХ	CANEN
					0					
				R	/W					
15				12	11		10		9	8
	Re	served			0 EIT		DIAGEN	INTE	ERNAL	LOOPBACK
					/W					
CANEN	The CAN Enab and REC count and the conten transmission be 0 – CAN modul 1 – CAN modul	er registers ar ts of the objec efore the CAN le is disabled.	e cleared. I t memory a	n addition t re left unch	he CAN mod	dule clock	is disabled	d. All CAN r	module cor	ntrol registers
СТХ	The Control Tra 0 – Dominant s 1 – Dominant s	tate is 0; rece	ssive state i	s 1.	f the CAN tra	ansmit pir	n CANTX.			
CRX	The Control Re 0 – Dominant s 1 – Dominant s	tate is 0; rece	ssive state i	s 1.	the CAN ree	ceive pin	CANRX.			
BUFFLOCK	The Buffer Lock frame reception data. 0 – Lock function 1 – Lock function	n. The buffer w	ill be unlock for all buffe	ked again b rs.						
STPEN	The Time Sync 0 – Time synch message to/ fro 1 – Time synch to/from buffer 0	ronization disa om buffer 0. ronization ena	abled. The T	Time Stamp	o counter val	ue is not	reset upon	reception c	or transmis	sion of a
DDIR	The Data Direc receives the C/ data contents o lowest data add 0 – First byte a	AN Data1 byte of a received m dress (see Fig t the highest a	first and the ressage is s ure 21-28). ddress, sub	e Data8 by stored with The same s sequent by	te last (Data the first byte applies for tr	1, Data2, at the hig ansmitted	,Data7, D ghest data I data.	ata8). If the	DDIR bit	is clear, the
	1 – First byte a			•						
	1 – First byte a Sequence of Da		·	·						
	,	ata Bytes on the	·	Data4	Data5	Data6	Data7	Data8	CRC	1
	Sequence of Data	ata Bytes on the	Bus	Data4	Data5 R Offset		Data7 ta Bytes	Data8	CRC	1 J t
	Sequence of Data	ata Bytes on the	Bus	Data4					CRC	1 J ↑
	Sequence of Data	ata Bytes on the 1 Data2	Bus	Data4	R Offset	Da	ta Bytes	2	CRC	1 J t
	Sequence of Data	ata Bytes on the 1 Data2	Bus	Data4	R Offset DA ₁₆	Da Data1	ta Bytes Data	2 4 6	CRC	1 J t

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

Setting the DDIR bit will cause the direction of the data storage to be reversed — the last byte received is stored at the highest address and the first byte is stored at the lowest address, as shown in Section 30.1.

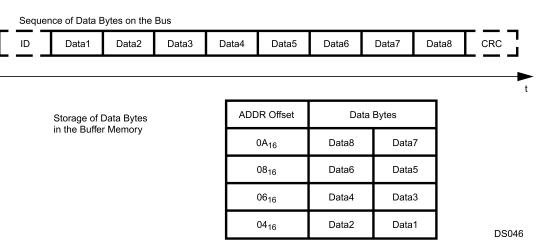


Figure 21-29. Data Direction Bit Set

LO	 The Listen Only bit can be used to configure the CAN interface to behave only as a receiver. This means: Cannot transmit any message. Cannot send a dominant ACK bit.
	 When errors are detected on the bus, the CAN module will behave as in the error passive mode. Using this listen only function, the CAN interface can be adjusted for connecting to an operating network with unknown bus speed. 0 – Transmit/receive mode. 1 – Listen-only mode.
IGNACK	When the Ignore Acknowledge bit is set, the CAN module does not expect to receive a dominant ACK bit to indicate the validity of a transmitted message. It will not send an error frame when the transmitted frame is not acknowledged by any other CAN node. This feature can be used in conjunction with the LOOPBACK bit for stand-alone tests outside of a CAN network. 0 – Normal mode. 1 – The CAN module does not expect to receive a dominant ACK bit to indicate the validity of a transmitted message.
LOOPBACK	When the Loopback bit is set, all messages sent by the CAN module can also be received by a CAN module buffer with a matching buffer ID. However, the CAN module does not acknowledge a message sent by itself. Therefore, the CAN module will send an error frame when no other device connected to the bus has acknowledged the message. 0 – No loopback. 1 – Loopback enabled.
INTERNAL	If the Internal function is enabled, the CANTX and CANRX pins of the CAN module are internally connected to each other. This feature can be used in conjunction with the LOOPBACK mode. This means that the CAN module can receive its own sent messages without connecting an external transceiver chip to the CANTX and CANRX pins; it allows software to run real stand-alone tests without any peripheral devices. 0 – Normal mode. 1 – Internal mode.
DIAGEN	 The Diagnostic Enable bit globally enables or disables the special diagnostic features of the CAN module. This includes the following functions: LO (Listen Only). IGNACK (Ignore Acknowledge). LOOPBACK (Loopback). INTERNAL (Internal Loopback). Write access to hidden receive buffer. 0 – Normal mode. 1 – Diagnostic features enabled.
EIT	The Error Interrupt Type bit configures when the Error Interrupt Pending Bit (CIPND.EIPND) is set and an error interrupt is generated if enabled by the Error Interrupt Enable (CIEN.EIEN). 0 – The EIPND bit is set on every error on the CAN bus. 1 – The EIPND bit is set only if the error state (CSTPND.NS) changes as a result of incrementing either the receive or transmit error counter.

www.ti.com

21.10.7 CAN Timing Register (CTIM)

The Can Timing Register (CTIM) defines the configuration of the Bit Time Logic (BTL).

15	9	8	7	6		3	2		0
PSC		SJ/	N		TSEG1			TSEG2	
		0							
		R/V	V						

PSC

The Prescaler Configuration field specifies the CAN prescaler. The settings are shown in Table 21-13

Table 21-13. CAN Prescaler Settings

PSC6:0	Prescaler
000000	2
000001	3
000010	4
000011	5
000100	6
:	:
1111101	127
1111110	128
1111111	128

SJW

The Synchronization Jump Width field specifies the Synchronization Jump Width, which can be programmed between 1 and 4 time quanta (see Table 21-14).

Table 21-14. SJW Settings

SJW	Synchronization Jump Width (SJW)
00	1 time quantum
01	2 time quanta
10	3 time quanta
11	4 time quanta

Note: The settings of SJW must be configured to be smaller or equal to TSEG1 and TSEG2

TSEG1 The Time Segment 1 field configures the length of the Time Segment 1 (TSEG1). It is not recommended to configure the time segment 1 to be smaller than 2 time quanta. (see Table 21-15).

Table 21-15. Time Segment 1 Settings

TSEG1[3:0]	Length of Time (TSEG1)
0000	Not recommended
0001	2 time quanta
0010	3 time quanta
0011	4 time quanta
0100	5 time quanta
0101	6 time quanta
0110	7 time quanta
0111	8 time quanta
1000	9 time quanta
1001	10 time quanta

Table 21-15. Time Segment 1 Settings (continued)
--

TSEG1[3:0]	Length of Time (TSEG1)
1010	11 time quanta
1011	12 time quanta
1100	13 time quanta
1101	14 time quanta
1110	15 time quanta
1111	16 time quanta

TSEG2

The Time Segment 2 field specifies the number of time quanta (tq) for phase segment 2 (see Table 21-16).

Table 21-16. Time Segment 2 Settings

TSEG2	Length of TSEG2
000	1 time quantum
001	2 time quanta
010	3 time quanta
011	4 time quanta
100	5 time quanta
101	6 time quanta
110	7 time quanta
111	8 time quanta

21.10.8 Global Mask Register (GMSKB/GMSKX)

The GMSKB and GMSKX registers allow software to globally mask, or "don't care" the incoming extended/standard identifier bits, RTR/XRTR and IDE. Throughout this document, the GMSKB and GMSKX 16-bit registers are referenced as a 32-bit register GMSK.

The following are the bits for the GMSKB register.

15	5	4	3	2		0		
GM[28:18]		RTR	IDE		GM[17:15]			
0								
		R	/W					

The following are the bits for the GMSKX register.

15 1	0
GM[14:0]	XRTR
0	
R/W	

For all GMSKB and GMSKX register bits, the following applies:

0 – The incoming identifier bit must match the corresponding bit in the message buffer identifier register.

1 – Accept 1 or 0 ("don't care") in the incoming ID bit independent from the corresponding bit in the message buffer ID registers. The corresponding ID bit in the message buffer will be overwritten by the incoming identifier bits.

Copyright © 2007–2013, Texas Instruments Incorporated

When an extended frame is received from the CAN bus, all GMSK bits GM[28:0], IDE, RTR, and XRTR are used to mask the incoming message. In this case, the RTR bit in the GMSK register corresponds to the SRR bit in the message. The XRTR bit in the GMSK register corresponds to the RTR bit in the message.

During the reception of standard frames only the GMSK bits GM[28:18], RTR, and IDE are used. In this case, the GM[28:18] bits in the GMSK register correspond to the ID[10:0] bits in the message.

Global Mask	GM[28:18]	RTR	IDE	GM[17:0] XRTR	
Standard Frame	ID[10:0]	RTR	IDE	Unused	
Extended Frame	ID[28:18]	SRR	IDE	ID[17:0] RTR	

21.10.9 Basic Mask Register (BMSKB/BMSKX)

The BMSKB and BMSKX registers allow masking the buffer 14, or "don't care" the incoming extended/standard identifier bits, RTR/XRTR, and IDE. Throughout this document, the two 16-bit registers BMSKB and BMSKX are referenced to as a 32-bit register BMSK.

The following are the bits for the BMSKB register.

15	5	4	3	2		0
BM[28:18]		RTR	IDE		BM[17:15]	
		0				
		R/W				

The following are the bits for the BMSKX register.

15	1	0
BM[14:0]		XRTR
0		
R/W		

For all BMSKB and BMSKX register bits the following applies:

0 – The incoming identifier bit must match the corresponding bit in the message buffer identifier register.

1 – Accept 1 or 0 ("don't care") in the incoming ID bit independent from the corresponding bit in the message buffer ID registers. The corresponding ID bit in the message buffer will be overwritten by the incoming identifier bits.

When an extended frame is received from the CAN bus, all BMSK bits BM[28:0], IDE, RTR, and XRTR are used to mask the incoming message. In this case, the RTR bit in the BMSK register corresponds to the SRR bit in the message. The XRTR bit in the BMSK register corresponds to the RTR bit in the message.

During the reception of standard frames, only the BMSK bits BM[28:18], RTR, and IDE are used. In this case, the BM[28:18] bits in the BMSK register correspond to the ID[10:0] bits in the message.

Basic Mask	BM[28:18]	RTR	IDE	BM[17:0]	XRTR
Standard Frame	ID[10:0]	RTR	IDE	Unused	
Extended Frame	ID[28:18]	SRR	IDE	ID[17:0]	RTR

Table 21-17. Basic Mask

21.10.10 CAN Interrupt Enable Register (CIEN)

The CAN Interrupt Enable (CIEN) register enables the transmit/receive interrupts of the message buffers 0 through 14 as well as the CAN Error Interrupt.

CF3CN3/

www.ti.com

STRUMENTS

15	14		0
EIEN		IEN	
		0	
		R/W	

EIEN	The Error Interrupt Enable bit allows the CAN module to interrupt the CPU if any kind of CAN receive/transmit errors are detected. This causes any error status change in the error counter registers REC/TEC is able to generate an error interrupt. 0 – The error interrupt is disabled and no error interrupt will be generated. 1 – The error interrupt is enabled and a change in REC/TEC will cause an interrupt to be generated.
IEN	The Buffer Interrupt Enable bits allow software to enable/disable the interrupt source for the corresponding message buffer. For example, IEN14 controls interrupts from buffer14, and IEN0 controls interrupts from buffer0. 0 – Buffer as interrupt source disabled. 1 – Buffer as interrupt source enabled.

21.10.11 CAN Interrupt Pending Register (CIPND)

The CIPND register indicates any CAN Receive/Transmit Interrupt Requests caused by the message buffers 0..14 and CAN error occurrences.

15	14 0
EIPND	IPND
	0
	R
EIPND	The Error Interrupt Pending field indicates the status change of TEC/REC and will execute an error interrupt if the EIEN bit is set. Software has the responsibility to clear the EIPND bit using the CICLR register. 0 – CAN status is not changed. 1 – CAN status is changed.
IPND	The Buffer Interrupt Pending bits are set by the CAN module following a successful transmission or reception of a message to or from the corresponding message buffer. For example, IPND14 corresponds to buffer14, and IPND0 corresponds to buffer0. 0 – No interrupt pending for the corresponding message buffer. 1 – Message buffer has generated an interrupt.

21.10.12 CAN Interrupt Clear Register (CICLR)

The CICLR register bits individually clear CAN interrupt pending flags caused by the message buffers and from the Error Management Logic. Do not modify this register with instructions that access the register as a read-modify-write operand, such as the bit manipulation instructions.

15	14	0
EICLR	ICLR	
	0	
	W	
EICLR	The Error Interrupt Clear bit is used to clear the EIPND bit. 0 – The EIPND bit is unaffected by writing 0. 1 – The EIPND bit is cleared by writing 1.	

ICLR The Buffer Interrupt Clear bits are used to clear the IPND bits. 0 – The corresponding IPND bit is unaffected by writing 0. 0 – The corresponding IPND bit is cleared by writing 1.

21.10.13 CAN Interrupt Code Enable Register (CICEN)

The CICEN register controls whether the interrupt pending flag in the CIPND register is translated into the Interrupt Code field of the CSTPND register. All interrupt requests, CAN error, and message buffer interrupts can be enabled/ disabled separately for the interrupt code indication field.

15	14	0
EICEN	ICEN	
	0	
	R/W	
EICEN	The Error Interrupt Code Enable bit controls encoding for error interrupts. 0 – Error interrupt pending is not indicated in the interrupt code. 1 – Error interrupt pending is indicated in the interrupt code.	
ICEN	The Buffer Interrupt Code Enable bits control encoding for message buffer interrupts. 0 – Message buffer interrupt pending is not indicated in the interrupt code.	

1 - Message buffer interrupt pending is indicated in the interrupt code.

21.10.14 CAN Status Pending Register (CSTPND)

The CSTPND register holds the status of the CAN Node and the Interrupt Code.

15	8	7	5	4	3	0
Reserved		NS		IRQ	IST	
		C)			
		F	R			

NS

The CAN Node Status field indicates the status of the CAN node as shown in Table 21-18.

Table 21-18. CAN Node Status

NS	Node Status		
000	Not Active		
010	Error Active		
011	Error Warning Level		
10X	Error Passive		
11X	Bus Off		

IRQ/IST

T The IRQ bit and IST field indicate the interrupt source of the highest priority interrupt currently pending and enabled in the CICEN register. Figure 23-3 shows the several interrupt codes when the encoding for all interrupt sources is enabled (CICEN = FFFFh).

Table 21-19. Highest Priority Interrupt Code

IRQ	IST3:0	CAN Interrupt Request			
0	0000	No interrupt request			
1	0000	Error interrupt			
1	0001	Buffer 0			
1	0010	Buffer 1			
1	0011	Buffer 2			
1	0100	Buffer 3			
1	0101	Buffer 4			
1	0110	Buffer 5			
1	0111	Buffer 6			
1	1000	Buffer 7			
1	1001	Buffer 8			

www.ti.com

IRQ	IST3:0	CAN Interrupt Request			
1	1010	Buffer 9			
1	1011	Buffer 10			
1	1100	Buffer 11			
1	1101	Buffer 12			
1	1110	Buffer 13			
1	1111	Buffer 14			

Table 21-19. Highest Priority Interrupt Code (continued)

21.10.15 CAN Error Counter Register (CANEC)

The CANEC register reports the values of the CAN Receive Error Counter and the CAN Transmit Error Counter.

15	8	7		0
REC			TEC	
	(0		
	F	२		

REC The CAN Receive Error Counter field reports the value of the receive error counter.

TEC The CAN Transmit Error Counter field reports the value of the transmit error counter.

21.10.16 CAN Error Diagnostic Register (CEDIAG)

The CEDIAG register reports information about the last detected error. The CAN module identifies the field within the CAN frame format in which the error occurred, and it identifies the bit number of the erroneous bit within the frame field. The APB bus master has read-only access to this register, and all bits are cleared on reset.

15	14	13	12	11	10	9	4	3	0
Res.	DRIVE	MON	CRC	STUFF	TXE		EBID	El	FID
	0								
			F	R					

EFID The Error Field Identifier field identifies the frame field in which the last error occurred. The encoding of the frame fields is shown in Table 21-20.

www.ti.com

Table 21-20. Error Field Identifier

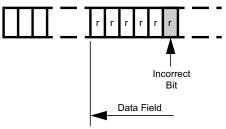

EFID3:0	Field	
0000	ERROR	
0001	ERROR DEL	
0010	ERROR ECHO	
0011	BUS IDLE	
0100	ACK	
0101	EOF	
0110	INTERMISSION	
0111	SUSPEND TRANSMISSION	
1000	SOF	
1001	ARBITRATION	
1010	IDE	
1011	EXTENDED ARBITRATION	
1100	R1/R0	

Table 21-21. Error Field Identifier

EFID3:0	Field
1101	DLC
1110	DATA
1111	CRC

EBID

The Error Bit Identifier field reports the bit position of the incorrect bit within the erroneous frame field. The bit number starts with the value equal to the respective frame field length minus one at the beginning of each field and is decremented with each CAN bit. Figure 21-30 shows an example on how the EBID is calculated.

DS047

Figure 21-30. EBID Example

	For example, assume the EFID field shows 1110b and the EBID field shows 111001b. This means the faulty field was the data field. To calculate the bit position of the error, the DLC of the message needs to be known. For example, for a DLC of 8 data bytes, the bit counter starts with the value: $(8 \times 8) - 1 = 63$; so when EBID[5:0] = 111001b = 57, then the bit number was 63 - 57 = 6.
TXE	The Transmit Error bit indicates whether the CAN module was an active transmitter at the time the error occurred. 0 – The CAN module was a receiver at the time the error occurred. 1 – The CAN module was an active transmitter at the time the error occurred.
STUFF	The Stuff Error bit indicates whether the bit stuffing rule was violated at the time the error occurred. Note that certain bit fields do not use bit stuffing and therefore this bit may be ignored for those fields.
	0 – No bit stuffing error. 1 – The bit stuffing rule was violated at the time the error occurred.
CRC	The CRC Error bit indicates whether the CRC is invalid. This bit should only be checked if the EFID field shows the code of the ACK field.
	0 – No CRC error occurred. 1 – CRC error occurred.
MON	The Monitor bit shows the bus value on the CANRX pin as sampled by the CAN module at the time of the error.
DRIVE	The Drive bit shows the output value on the CANTX pin at the time of the error. Note that a receiver will not drive the bus except during ACK and during an active error flag.

21.10.17 CAN Timer Register (CTMR)

The CTMR register reports the current value of the Time Stamp Counter as described in Section 21.8.

15		0
	CTMR15:0	
	0	
	R	

The CTMR register is a free running 16-bit counter. It contains the number of CAN bits recognized by the CAN module since the register has been cleared. The counter starts to increment from the value 0000b after a hardware reset. If the Timer Stamp Enable bit (TSTPEN) in the CAN global configuration register (CGCR) is set, the counter will also be cleared on a message transfer of the message buffer 0.

The contents of CTMR are captured into the Time Stamp register of the message buffer after successfully sending or receiving a frame, as described in Time Stamp Counter.

21.11 SYSTEM START-UP AND MULTI-INPUT WAKE-UP

After system start-up, all CAN-related registers are in their reset state. The CAN module can be enabled after all configuration registers are set to their desired value. The following initial settings must be made:

- Configure the CAN Timing register (CTIM). See Bit Time Logic.
- Configure every buffer to its function as receive/transmit. See Buffer Status/Control Register (CNSTAT).
- Set the acceptance filtering masks. See Acceptance Filtering.
- Enable the CAN interface. See CAN Global Configuration Register.

Before disabling the CAN module, software must make sure that no transmission is still pending.

Note: Activity on the CAN bus can wake up the device from a reduced-power mode by selecting the CANRX pin as an input to the Multi-Input Wake-Up module. In this case, the CAN module must not be disabled before entering the reduced- power mode. Disabling the CAN module also disables the CANRX pin. As an alternative, the CANRX pin can be connected to any other input pin of the Multi-Input Wake-Up module. This input channel must then be configured to trigger a wake-up event on a falling edge (if a dominant bit is represented by a low level). In this case, the CAN module can be disabled before entering the reduced-power mode. After waking up, software must enable the CAN module again. All configuration and buffer registers still contain the same data they held before the reduced-power mode was entered.

21.11.1 External Connection

The CAN module uses the CANTX and CANRX pins to connect to the physical layer of the CAN interface. They provide the functionality described in Table 21-22.

Signal Name	Туре	Description
CANTX	Output	Transmit data to the CAN bus
CANRX	Input	Receive data from the CAN bus

Table 21-22. External CAN Pins

The logic levels are configurable by the CTX and CRX bits of the Global Configuration Register CGCR (see CAN Global Configuration Register (CGCR)).

Texas Instruments

21.11.2 Transceiver Connection

An external transceiver chip must be connected between the CAN block and the bus. It establishes a bus connection in differential mode and provides the driver and protection requirements. Figure 21-31 shows a possible ISO-High-Speed configuration.

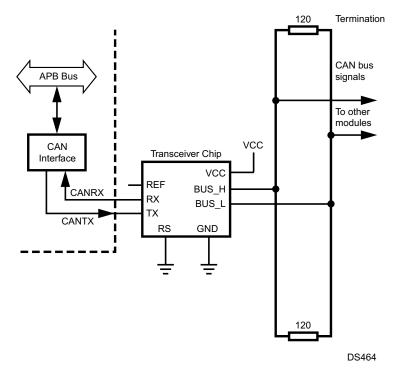


Figure 21-31. External Transceiver

21.11.3 Timing Requirements

Processing messages and updating message buffers require a certain number of clock cycles, as shown in Table 21-23. These requirements may lead to some restrictions regarding the Bit Time Logic settings and the overall CAN performance which are described below in more detail. Wait cycles need to be added to the cycle count for CPU access to the object memory as described in CPU Access to CAN Registers/Memory. The number of occurrences per frame is dependent on the number of matching identifiers.

Table 21-23.	CAN	Module	Internal	Timing
--------------	-----	--------	----------	--------

Task	Cycle Count	Occurrence/Frame
Copy hidden buffer to receive message buffer	17	0-1
Update status from TX_RTR to TX_ONCE_RTR	3	0-15
Schedule a message for transmission	2	0-1

The critical path derives from receiving a remote frame, which triggers the transmission of one or more data frames. There are a minimum of four bit times in-between two consecutive frames. These bit times start at the validation point of received frame (reception of 6th EOF bit) and end at the earliest possible transmission start of the next frame, which is after the third intermission bit at 100% burst bus load.

These four bit times have to be set in perspective with the timing requirements of the CAN module.

The minimum duration of the four CAN bit times is determined by the following Bit Time Logic settings:

- PSC = PSCmin = 2
- TSEG1 = TSEG1min = 2

IEXAS INSTRUMENTS

www.ti.com

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

- TSEG2 = TSEG2min = 1
- Bit time = Sync + Time Segment 1 + Time Segment 2
 - = (1 + 2 + 1) tq = 4 tq
 - = (4 tq × PSC) clock cycles
 - = (4 tq × 2) clock cycles = 8 clock cycles

For these minimum BTL settings, four CAN bit times take 32 clock cycles.

The following is an example that assumes typical case:

- Minimum BTL settings
- Reception and copy of a remote frame
- Update of one buffer from TX_RTR
- Schedule of one buffer from transmit

As outlined in Table 21-23, the copy process, update, and scheduling the next transmission gives a total of 17 + 3 + 2 = 22 clock cycles. Therefore under these conditions there is no timing restriction.

The following example assumes the worst case:

- Minimum BTL settings
- Reception and copy of a remote frame
- Update of the 14 remaining buffers from TX_RTR
- Schedule of one buffer for transmit

All these actions in total require $17 + (14 \times 3) + 2 = 61$ clock cycles to be executed by the CAN module. This leads to the limitation of the Bit Time Logic of 61 / 4 = 15.25 clock cycles per CAN bit as a minimum, resulting in the minimum clock frequencies listed below. (The frequency depends on the desired baud rate and assumes the worst case scenario can occur in the application.)

Table 21-24 gives examples for the minimum clock frequency in order to ensure proper functionality at various CAN bus speeds.

Baud Rate	Minimum Clock Frequency
1 Mbit/sec	15.25 MHz
500 kbit/sec	7.625 MHz
250 kbit/sec	3.81 MHz

Table 21-24. Minimum Clock Frequency Requirements

21.11.4 Bit Time Logic Calculation Examples

The calculation of the CAN bus clocks using CKI = 16 MHz is shown in the following examples. The desired baud rate for both examples is 1 Mbit/s.

Example 1

PSC = PSC[5:0] + 2 = 0 + 2 = 2

TSEG1 = TSEG1[3:0] + 1 = 3 + 1 = 4

TSEG2 = TSEG2[2:0] + 1 = 2 + 1 = 3

SJW = TSEG2 = 3

- Sample point positioned at 62.5% of bit time
- Bit time = 125 ns × (1 + 4 + 3 ± 3) = (1 ± 0.375) μs
- Bus Clock = 16 MHz / (2 × (1 + 4 + 3)) = 1 Mbit/s (nominal)

Example 2

PSC = PSC[5:0] + 1 = 2 + 2 = 4

TEXAS INSTRUMENTS

www.ti.com

TSEG1 = TSEG1[3:0] + 1 = 1 + 1 = 2

TSEG2 = TSEG2[2:0] + 1 = 0 + 1 = 1

- SJW = TSEG2 = 1
- Sample point positioned at 75% of bit time
- Bit time = 250 ns × (1 + 2 + 1 ± 1) = (1 ± 0.25) μs
- Bus Clock = 16 MHz / (2 × (1 + 4 + 3)) = 1Mbit/s (nominal)

21.11.5 Acceptance Filter Considerations

The CAN module provides two acceptance filter masks GMSK and BMSK, as described in Acceptance Filtering, Global Mask Register (GMSKB/GMSKX), and Basic Mask Register (BMSKB/BMSKX). These masks allow filtering of up to 32 bits of the message object, which includes the standard identifier, the extended identifier, and the frame control bits RTR, SRR, and IDE.

21.11.6 Remote Frames

Remote frames can be automatically processed by the CAN module. However, to fully enable this feature, the RTR/ XRTR bits (for both standard and extended frames) within the BMSK and/or GMSK register need to be set to "don't care". This is because a remote frame with the RTR bit set should trigger the transmission of a data frame with the RTR bit clear and therefore the ID bits of the received message need to pass through the acceptance filter. The same applies to transmitting remote frames and switching to receive the corresponding data frames.

21.12 USAGE HINT

Under certain conditions, the CAN module receives a frame sent by itself, even though the loopback feature is disabled. Two conditions must be true to cause this malfunction:

- A transmit buffer and at least one receive buffer are configured with the same identifier. Assume this identifier is called ID_RX_TX. With regard to the receive buffer, this means that the buffer identifier and the corresponding filter masks are set up in a way that the buffer is able to receive frames with the identifier ID_RX_TX.
- The following sequence of events occurs:
 - 1. A message with the identifier ID_RX_TX from another CAN node is received into the receive buffer.
 - 2. A message with the identifier ID_RX_TX is sent by the CAN module immediately after the reception took place.

When these conditions occur, the frame sent by the CAN module will be copied into the next receive buffer available for the identifier ID_RX_TX.

If a frame with an identifier different to ID_RX_TX is sent or received in between events 1 and 2, the problem does not occur.

www.ti.com

22 ANALOG TO DIGITAL CONVERTER

The ADC provides the following features:

- 10-input analog multiplexer
- 10 single-ended channels or 5 differential channels
- External filtering capability
- 12-bit resolution with 10-bit accuracy
- Sign bit
- 10-microsecond conversion time
- Programmable start delay after start trigger
- Poll or interrupt on conversion complete

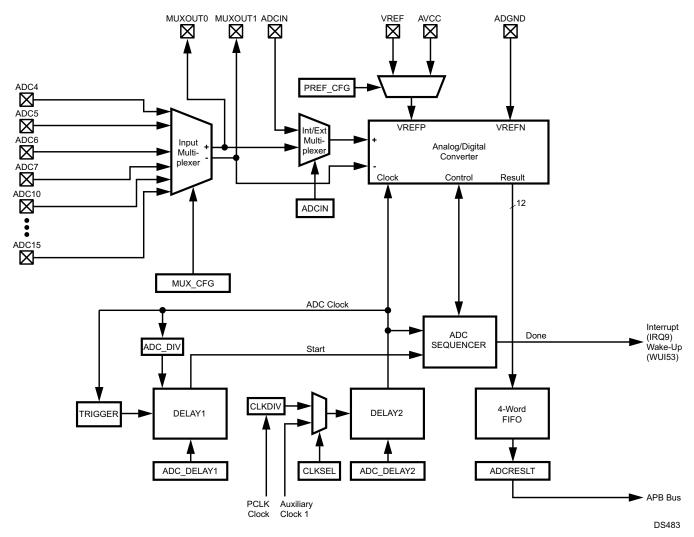


Figure 22-1. Analog to Digital Converter Block Diagram

22.1 FUNCTIONAL DESCRIPTION

The ADC module consists of an analog/digital converter and associated state machine, together with analog multiplexers to set up signal paths for sampling and voltage references, logic to control triggering of the converter, and a bus interface.

22.1.1 Data Path

The ADC[15:10,7:4] pins may be configured as 10 single-ended analog inputs or 5 differential pairs. Analog/digital data passes through four main blocks in the ADC module between the input pins and the APB bus:

- Input Multiplexer—an analog multiplexer that selects among the input channels.
- Internal/External Multiplexer—an analog multiplexer that selects between the output of the Input Multiplexer and the ADCIN external analog input.
- Analog/Digital Converter—receives the output of the Internal/External Multiplexer and performs the analog to digital conversion.
- ADCRESLT Register—makes conversion results from the ADC available to the on-chip bus. The ADCRESLT register includes the software-visible end of a 4-word FIFO used to queue conversion results.

The configuration of the analog signal paths is controlled by fields in the ADCGCR register. The Input Multiplexer is controlled by the MUX_CFG field. The Internal/External Multiplexer is controlled by the ADCIN bit. The analog multiplexer for selecting the voltage reference used by the ADC is controlled by the PREF_CFG field.

The output of the Input Multiplexer is available externally as the MUXOUT0 and MUXOUT1 signals. In single-ended mode, only MUXOUT0 is used. In differential mode, MUXOUT0 is the positive side and MUXOUT1 is the negative side. The MUXOUT0 and MUXOUT1 outputs and the ADCIN external analog input are provided so that external signal conditioning circuits (such as filters) may be applied to the analog signals before conversion. The MUXOUT0, MUXOUT1, and ADCIN signals are alternate functions of the ADC inputs, so the number of available ADC inputs is reduced when these signals are used.

22.1.2 Operation

The TRIGGER block initiates a conversion on writing any value to the ADCSTART register. Once a trigger event has been recognized, no further triggering is recognized until the conversion is completed.

Once a trigger event is recognized, the DELAY1 block waits for a programmable delay specified in the ADC_DELAY1 field of the ADCSCDLY register. Then, it asserts the Start signal to the ADC SEQUENCER block.

When the Start signal is received, the ADC SEQUENCER block initiates the conversion in the ADC. After the conversion is complete, the result is loaded into the FIFO, and the Done signal is asserted.

The ADCRESLT register includes the software-visible end of a 4-word FIFO, which allows up to 4 conversion results to be queued for reading. Reading the ADCRESLT register unloads the FIFO. If the FIFO overflows, a bit is set in the ADCRESLT register, and the last conversion result is lost.

The Done signal is visible to software as the ADC_DONE bit in the ADCRESLT register. The Done signal is also an input to the interrupt controller (IRQ9). The interrupt will be asserted whenever the FIFO is not empty (but will deassert for one PCLK Clock period after the ADCRESLT register is read). Total conversion time is 10 microseconds.

The Done signal is also an input to the Multi-Input Wake-Up unit (WUI53). The MIWU input is asserted whenever the FIFO is not empty (but will deassert for one clock period after the ADCRESLT register is read). The wake-up output is provided so that the ADC module can bring the system out of a low-power mode when a conversion operation is completed. It asserts earlier than the interrupt output.

22.1.3 ADC Clock Generation

The DELAY2 block generates ADC Clock, which is the clock used internally by the ADC module. ADC Clock is derived from either:

- PCLK Clock—a programmable divider is available to generate the 12 MHz clock required by the ADC from the PCLK Clock.
- Auxiliary Clock 1—may be used to perform conversions when the PCLK Clock is slowed down or suspended in low-power modes.

The DELAY2 block receives the clock source selected by the CLKSEL bit of the ADCACR register and adds a number of asynchronous incremental delay units specified in the ADC_DELAY2 field of the ADCSCDLY register. This delayed clock (ADC Clock) then drives the TRIGGER, ADC, and ADC SEQUENCER blocks. ADC Clock also drives the ADC_DIV clock divider, which generates the clock which drives the DELAY1 block.

Because the ADCRESLT FIFO is driven by PCLK Clock (not ADC Clock), a conversion result will not propagate to the output of the FIFO when PCLK Clock is suspended.

22.1.4 ADC Voltage References

The ADC block has a voltage reference input, VREF. An analog multiplexer allows selecting an external VREF pin or the analog supply voltage ADVCC as the positive voltage reference, as controlled by the PREF_CFG field of the ADCGCR register.

22.2 OPERATION IN LOW-POWER MODES

To reduce the level of switching noise in the environment of the ADC, it is possible to operate the CP3CN37 in low-power modes, in which the PCLK Clock is slowed or switched off. Under these conditions, Auxiliary Clock 1 can be selected as the clock source for the ADC module, however conversion results cannot be read by the system while the PCLK Clock is suspended. To operate in a low-power mode:

- 1. ADC is configured and a conversion is triggered.
- 2. A low-powered mode is entered.
- 3. ADC conversion completes and a wake-up signal is asserted to the MIWU unit.
- 4. Device wakes up and processes the conversion result.

To conserve power, the ADC should be disabled before entering a low-power mode if its function is not required.

22.3 FREEZE MODE

When Freeze mode is entered, the ADC will exhibit the following specific behavior:

- The automatic clear-on-read function of the result register (ADCRESLT) is disabled.
- The FIFO is updated as usual, and an interrupt for a completed conversion can be asserted.

www.ti.com

22.4 ADC REGISTER SET

Table 22-1 lists the ADC registers.

Table 22-1. ADC Registers

Name	Address	Description
ADCGCR	FF AC00h	ADC Global Configuration Register
ADCACR	FF AC04h	ADC Auxiliary Configuration Register
ADCCNTRL	FF AC08h	ADC Conversion Control Register
ADCSTART	FF AC0Ch	ADC Start Conversion Register
ADCSCDLY	FF AC10h	ADC Start Conversion Delay Register
ADCRESLT	FF AC14h	ADC Result Register

22.4.1 ADC Global Configuration Register (ADCGCR)

The ADCGCR register is a 16-bit, read/write register that controls the basic operation of the interface. The APB bus master has read/write access to the ADCGCR register. After reset this register is cleared.

9		7	6	3	2	1	0			
	Reserved		MU>	K_CFG	DIFF	ADCIN	CLKEN			
	15	14	13	12	11		10			
М	JXOUTEN	INTEN	Res	served		PREF_CFG				
CLKEN	CLKEN The Clock Enable bit controls whether the ADC module is running. When this bit is clear, all ADC clocks are disabled, the ADC analog circuits are in a low-power state, and ADC registers (other than the ADCGCR and AGCACR registers) are not writeable. Clearing this bit reinitializes the ADC state machine and cancels any pending trigger event. Set- ting this bit enables the ADC clocks and powers up the ADC analog circuits. The converter is operational within 0.25 μs of being enabled. 0 – ADC disabled. 1 – ADC enabled.									
ADCIN	The ADCIN bit selects the source of the ADC input. When the bit is clear, the source is the 10- channel Input Multiplexer. When the bit is set, the source is the ADCIN pin. 0 - ADC input is from 10-channel multiplexer. 1 - ADC input is from ADCIN pin.									
DIFF										
MUX_CFG	The Multiplexer Cont module, as shown be		the DIFF bit cor	figure the analog o	circuits of the AD	C				
N	IUX_CFG	Channel (DIFF = 0)		Channel	(DIFF = 1)				
			· · ·							

MUX_CFG	Channel (DIFF = 0)	Channel (DIFF = 1)							
		+	-						
0000 to 0011		Reserved							
0100	4	4	5						
0101	5	5	4						
0110	6	6	7						
0111	7	7	6						
1000 to 1001		Reserved							
1010	10	10	11						
1011	11	11	10						
1100	12	12	13						
1101	13	13	12						
1110	14	14	15						
1111	15	15	14						

www.ti.com

 PREF_CFG
 The Positive Voltage Reference Configuration field specifies the source of the ADC positive voltage reference, as shown below:

 PREF_CFG
 PREF Source

 00
 Internal (ADVCC)

00	Internal (ADVCC
01	VREF
10	Reserved
11	Reserved

MUXOUTEN The MUXOUT Enable bit controls whether the output of the Input Multiplexer is available ex- ternally. In single-ended mode, the MUXOUT0 pin is active and the MUXOUT1 pin is disabled (TRI-STATE). In differential mode, both MUXOUT0 and MUXOUT1 are active. 0 – MUXOUT0 and MUXOUT1 disabled.

1 – MUXOUT0 and MUXOUT1 enabled.

INTEN The Interrupt Enable bit controls whether the ADC interrupt (IRQ9) is enabled. When en- abled, the interrupt request is asserted when valid data is available in the ADCRESLT reg- ister. This bit has no effect on the wake-up signal to the MIWU unit (WUI53). 0 – IRQ9 disabled.

1 – IRQ9 enabled

22.4.2 ADC Auxiliary Configuration Register (ADCACR)

The ADCACR register is a 16-bit, read/write register used to control the clock configuration and report the status of the ADC module. The APB bus master has read/write access to the ADCACR register. After reset, this register is clear.

15	14	13	3	2	0					
CNVT	TRG	Res	erved	CLKI	NIV	CLKSEL				
CLKSEL	0 – ADC clock c	The Clock Select bit selects the clock source used by the DELAY2 block to generate the ADC clock. 0 – ADC clock derived from PCLK Clock. 1 – ADC clock derived from Auxiliary Clock 1.								
CLKDIV	The Clock Divisor field specifies the divisor applied to PCLK Clock to generate the 12 MHz clock required by the ADC module. Only the PCLK Clock is affected by this divisor. The divisor is not used when Auxiliary Clock 1 is selected as clock source.									
	CLKDIV	Clock Divisor								
	00	1								
	01	2								
	10	4								
	11	Reserved								
TRG	The ADC Triggered bit is a read-only bit that indicates the ADC has been triggered. The bit is set during any pre- conversion delay. The bit is cleared after the conversion is completed. Once triggered, no new trigger events will be recognized until after the conversion has completed, as indicated by the ADC_DONE bit in the ADCRESLT register. 0 – ADC has not been triggered. 1 – ADC has been triggered.									
CNVT	 1 – ADC has been triggered. The ADC Conversion bit is a read-only bit that indicates the ADC has been triggered, any pre-conversion delay has expired, and the ADC conversion is in progress. The bit is cleared after the conversion is completed. 0 – ADC is not performing a conversion. 1 – ADC conversion is in progress. 									

22.4.3 ADC Start Conversion Register (ADCSTART)

The ADCSTART register is a write-only register used by software to initiate an ADC conversion. Writing any value to this register will cause the ADC to initiate a conversion.

www.ti.com

ISTRUMENTS

EXAS

22.4.4 ADC Start Conversion Delay Register (ADCSCDLY)

The ADCSCDLY register is a 16-bit, read/write register that controls critical timing parameters for the operation of the ADC module. After reset, the register is cleared.

15	14	13		5	4	0				
ADC	C_DIV		ADC_DELAY1		ADC_D	ELAY2				
ADC_DELAY2	ADC_DELAY2 The ADC Delay 2 field specifies the delay between the ADC module clock source (either PCLK Clock after a programmable divider or Auxiliary Clock 1) and the ADC clock. The range of effective values for this field is 0 to 20. Values above 20 produce the same delay as 20, which is about 42 ns.									
ADC_DELAY1	The ADC Delay 1 field specifies the number of clock periods by which the trigger event will be delayed before initiat conversion. The timebase for this delay is the ADC clock (12 MHz) divided by the ADC_DIV divisor. The ADC_DEL field has 9 bits, which corresponds to a maximum delay of 511 clock periods.									
ADC_DIV	The ADC Clock Divisor field specifies the divisor applied to the ADC clock (12 MHz) to generate the clock us the DELAY1 block. The field is biased by 1, so the divisor selected by the ADC_DIV field may be 1, 2, 3, or module clock of 12 MHz, the maximum delay which can be provided by ADC_DIV and ADC_DELAY settings									
	(1 / 12 MHz) x	4 x 511 = 170 ι	JS			(11)				

22.4.5 ADC Result Register (ADCRESLT)

The ADCRESLT register is a 16-bit, read-only register that includes the software-visible end of a 4-word FIFO. Conversion results are loaded into the FIFO from the ADC and unloaded when software reads the ADCRESLT register. The ADCRESLT register is read-only. The defined fields in this register are cleared when the register is read. After reset, this register is clear.

11				0					
		ADC_R	ESULT						
15		14	12						
ADC_	_DONE	ADC_OFLW	Reserved	SIGN					
ADC_RESULT		field holds a 12-bit value for the cor the field will have a value of 0. The ADC FIFO.							
SIGN	The Sign bit indicates whether the - input has a voltage greater than the + input (differential mode only). For example if ADCGCR. MUX_CFG is 000b, ADC0 is the + input and ADC1 is the - input. If the voltage on ADC0 is greater than the voltage on ADC1, the SIGN bit will be 0; if the voltage on ADC0 is less than the voltage on ADC1, the SIGN bit will be 0; if the voltage on ADC0 is less than the voltage on ADC1, the SIGN bit will be 1. In single-ended mode, this bit always reads as 0. 0 - In differential mode, + input has a voltage greater than the - input. In single-ended mode, this bit is always 0. 1 - In differential mode, - input has a voltage greater than the + input.								
ADC_OFLW	The ADC FIFO Overflow bit indicates whether the 4-word FIFO behind the ADCRESLT register has overflowed. When this occurs, the most recent conversion result is lost. This bit is cleared when the ADCRESLT register is read. 0 - FIFO overflow has not occurred. 1 - FIFO overflow has occurred.								
ADC_DONE	field is valid. Whe ADCRESLT regis after one PCLK (0 – No ADC conv	 1 – FIFO overflow has occurred. The ADC Done bit indicates when an ADC conversion has completed. When this bit is set, the data in the ADC_RESUL field is valid. When this bit is clear, there is no valid data in the ADC_RESULT field. The Done bit is cleared when the ADCRESLT register is read, but if there are queued conversion results in the FIFO, the Done bit will become set again after one PCLK Clock period. 0 – No ADC conversion has completed since the ADCRESLT register was last read. 1 – An ADC conversion has completed since the ADCRESLT register was last read. 							

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

23 ADVANCED AUDIO INTERFACE

The Advanced Audio Interface (AAI) provides a serial synchronous, full duplex interface to codecs and similar serial devices. The transmit and receive paths may operate asynchronously with respect to each other. Each path uses a 3- wire interface consisting of a bit clock, a frame synchronization signal, and a data signal.

The CPU interface can be either interrupt-driven or DMA. If the interface is configured for interrupt-driven I/O, data is buffered in the receive and transmit FIFOs. If the interface is configured for DMA, the data is buffered in registers.

The AAI is functionally similar to a Motorola[™] Synchronous Serial Interface (SSI). Compared to a standard SSI implementation, the AAI interface does not support the so-called "On-demand Mode". It also does not allow gating of the shift clocks, so the receive and transmit shift clocks are always active while the AAI is enabled. The AAI also does not support 12- and 24-bit data word length or more than 4 slots (words) per frame. The reduction of supported modes is acceptable, because the main purpose of the AAI is to connect to audio codecs, rather than to other processors (DSPs).

The implementation of a FIFO as a 16-word receive and transmit buffer is an additional feature, which simplifies communication and reduces interrupt load. Independent DMA is provided for each of the four supported audio channels (slots). The AAI also provides special features and operating modes to simplify gain control in an external codec and to connect to an ISDN controller through an IOM-2 compatible interface.

23.1 AUDIO INTERFACE SIGNALS

23.1.1 Serial Transmit Data (STD)

The STD pin is used to transmit data from the serial transmit shift register (ATSR). The STD pin is an output when data is being transmitted and is in high-impedance mode when no data is being transmitted. The data on the STD pin changes on the positive edge of the transmit shift clock (SCK). The STD pin goes into high-impedance mode on the negative edge of SCK of the last bit of the data word to be transmitted, assuming no other data word follows immediately. If another data word follows immediately, the STD pin remains active rather than going to the high-impedance mode.

23.1.2 Serial Transmit Clock (SCK)

The SCK pin is a bidirectional signal that provides the serial shift clock. In asynchronous mode, this clock is used only by the transmitter to shift out data on the positive edge. The serial shift clock may be generated internally or it may be provided by an external clock source. In synchronous mode, the SCK pin is used by both the transmitter and the receiver. Data is shifted out from the STD pin on the positive edge, and data is sampled on the SRD pin on the negative edge.

23.1.3 Serial Transmit Frame Sync (SFS)

The SFS pin is a bidirectional signal which provides frame synchronization. In asynchronous mode, this signal is used as frame sync only by the transmitter. In synchronous mode, this signal is used as frame sync by both the transmitter and receiver. The frame sync signal may be generated internally, or it may be provided by an external source.

23.1.4 Serial Receive Data (SRD)

The SRD pin is used as an input when data is shifted into the Audio Receive Shift Register (ARSR). In asynchronous mode, data on the SRD pin is sampled on the negative edge of the serial receive shift clock (SRCLK). In synchronous mode, data on the SRD pin is sampled on the negative edge of the serial shift clock (SCK). The data is shifted into ARSR with the most significant bit (MSB) first.

www.ti.com

23.1.5 Serial Receive Clock (SRCLK)

The SRCLK pin is a bidirectional signal that provides the receive serial shift clock in asynchronous mode. In this mode, data is sampled on the negative edge of SRCLK. The SRCLK signal may be generated internally or it may be provided by an external clock source. In synchronous mode, the SCK pin is used as shift clock for both the receiver and transmitter, so the SRCLK pin is available for use as a generalpurpose port pin or an auxiliary frame sync signal to access multiple slave devices (for example, codecs) within a network (see Network Mode).

23.1.6 Serial Receive Frame Sync (SRFS)

The SRFS pin is a bidirectional signal that provides frame synchronization for the receiver in asynchronous mode. The frame sync signal may be generated internally, or it may be provided by an external source. In synchronous mode, the SFS signal is used as the frame sync signal for both the transmitter and receiver, so the SRFS pin is available for use as a general-purpose port pin or an auxiliary frame sync signal to access multiple slave devices (for example, codecs) within a network (see Network Mode).

23.2 AUDIO INTERFACE MODES

There are two clocking modes: asynchronous mode and synchronous mode. These modes differ in the source and timing of the clock signals used to transfer data. When the AAI is generating the bit shift clock and frame sync signals internally, synchronous mode must be used.

There are two framing modes: normal mode and network mode. In normal mode, one word is transferred per frame. In network mode, up to four words are transferred per frame. A word may be 8 or 16 bits. The part of the frame which carries a word is called a slot. Network mode supports multiple external devices sharing the interface, in which each device is assigned its own slot. Separate frame sync signals are provided, so that each device is triggered to send or receive its data during its assigned slot.

23.2.1 Asynchronous Mode

In asynchronous mode, the receive and transmit paths of the audio interface operate independently, with each path using its own bit clock and frame sync signal. The frame sync signals must be supplied externally.

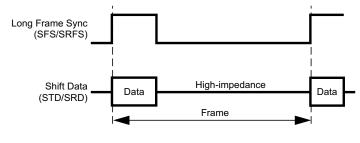
23.2.2 Synchronous Mode

In synchronous mode, the receive and transmit paths of the audio interface use the same shift clock and frame sync signal. The bit shift clock and frame sync signal for both paths are derived from the same set of clock prescalers.

23.2.3 Normal Mode

In normal mode, each rising edge on the frame sync signal marks the beginning of a new frame and also the beginning of a new slot. A slot does not necessarily occupy the entire frame. (A frame can be longer than the data word transmitted after the frame sync pulse.) Typically, a codec starts transmitting a fixed length data word (for example, 8-bit log PCM data) with the frame sync signal, then the codec's transmit pin returns to the high-impedance state for the remainder of the frame.

The Audio Receive Shift Register (ARSR) deserializes data received on the SRD pin (serial receiver data). Only the data sampled after the frame sync signal are treated as valid. If the interface is interrupt-driven, valid data bits are transferred from the ARSR to the receive FIFO. If the interface is configured for DMA, the data is transferred to the receive DMA register 0 (ARDR0).


The serial transmit data (STD) pin is only an active output while data is shifted out. After the defined number of data bits have been shifted out, the STD pin returns to the highimpedance state.

For operation in normal mode, the Slot Count Select field in the Global Configuration register (AGCR) must be loaded with 00b (one slot per frame). In addition, the Slot Assignment field for receive and transmit must select slot 0.

If the interface is configured for DMA, the DMA slot assignment bits must select slot 0. In this case, the audio data is transferred to or from the receive or transmit DMA register 0 (ARDR0/ATDR0).

Figure 23-1 shows the frame timing while operating in normal mode with a long frame sync interval.

DS053

Figure 23-1. Normal Mode Frame

IRQ Support

If the receiver interface is configured for interrupt-driven I/O (RXDSA0 = 0), all received data are loaded into the receive FIFO. An IRQ is asserted as soon as the number of data bytes or words in the receive FIFO is greater than a programmable warning limit.

If the transmitter interface is configured for interrupt-driven I/O (TXDSA0 = 0), all data to be transmitted is read from the transmit FIFO. An IRQ is asserted as soon as the number data bytes or words available in the transmit FIFO is equal or less than a programmable warning limit.

DMA Support

If the receiver interface is configured for DMA (RXDSA0 = 1), received data is transferred from the ARSR into the DMA receive buffer 0 (ARDR0). A DMA request is asserted when the ARDR0 register is full. If the transmitter interface is configured for DMA (TXDSA0 = 1), data to be transmitted are read from the DMA transmit buffer 0 (ATDR0). A DMA request is asserted to the DMA controller when the ATDR0 register is empty.

Figure 23-2 shows the data flow for IRQ and DMA mode in normal Mode.

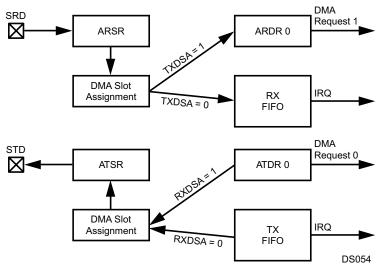


Figure 23-2. IRQ/DMA Support in Normal Mode

Network Mode

In network mode, each frame is composed of multiple slots. Each slot may transfer 8 or 16 bits. All of the slots in a frame must have the same length. In network mode, the sync signal marks the beginning of a new frame.

More than two devices can communicate within a network using the same clock and data lines. The devices connected to the same bus use a time-multiplexed approach to share access to the bus. Each device has certain slots assigned to it, in which only that device is allowed to transfer data. One master device provides the bit clock and the frame sync signal(s). On all other (slave) devices, the bit clock and frame sync pins are inputs.

Up to four slots can be assigned to the AAI, as it supports up to four slots per frame. Any other slots within the frame are reserved for other devices.

The transmitter only drives data on the STD pin during slots which have been assigned to the AAI. During all other slots, the STD output is in high-impedance mode, and data can be driven by other devices. The assignment of slots to the transmitter is specified by the Transmit Slot Assignment bits (TXSA) in the ATCR register. It can also be specified whether the data to be transmitted is transferred from the transmit FIFO or the corresponding DMA transmit register. There is one DMA transmit register (ATDRn) for each of the maximum four data slots. Each slot can be configured independently.

On the receiver side, only the valid data bits which were received during the slots assigned to this interface are copied into the receive FIFO or DMA registers. The assignment of slots to the receiver is specified by the Receive Slot Assignment bits (RXSA) in the ATCR register. It can also be specified whether the received data is copied into the receive FIFO or into the corresponding DMA receive register. There is one DMA receive register (ARDRn) for each of the maximum four data slots. Each slot may be configured individually.

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

Figure 23-3 shows the frame timing while operating in network mode with four slots per frame, slot 1 assigned to the interface, and a long frame sync interval.

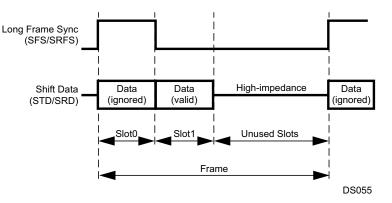


Figure 23-3. Network Mode Frame

Interrupt Support

If DMA is not enabled for a receive slot n (RXDSAn = 0), all data received in this slot is loaded into the receive FIFO. The interrupt request is asserted as soon as the number of data bytes or words in the receive FIFO is greater than a programmable warning limit.

If DMA is not enabled for a transmit slot n (TXDSAn = 0), all data to be transmitted in this slot are read from the transmit FIFO. The interrupt request is asserted as soon as the number data bytes or words available in the transmit FIFO is equal or less than a programmable warning limit.

DMA Support

If DMA support is enabled for a receive slot n (RXDSA0 = 1), all data received in this slot is only transferred from the ARSR into the corresponding DMA receive register (ARDRn). A DMA request is asserted when the ARDRn register is full.

If DMA is enabled for a transmit slot n (TXDSAn = 1), all data to be transmitted in slot n are read from the corresponding DMA transmit register (ATDRn). A DMA request is asserted to the DMA controller when the ATDRn register is empty.

Figure 23-4 illustrates the data flow for IRQ and DMA support in network mode, using four slots per frame and DMA support enabled for slots 0 and 1 in receive and transmit direction.

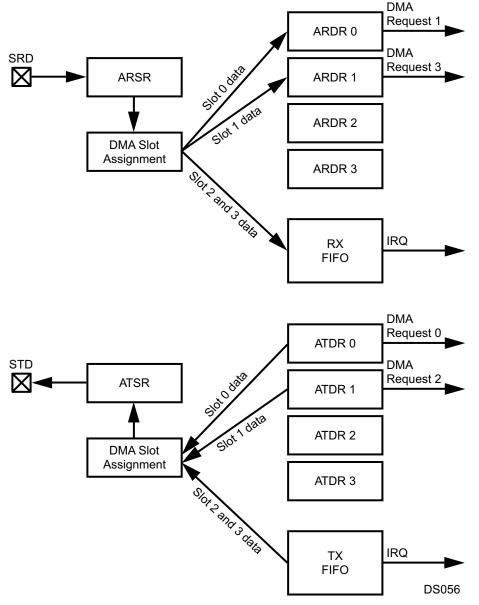


Figure 23-4. IRQ/DMA Support in Network Mode

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

If the interface operates in synchronous mode, the receiver uses the transmit bit clock (SCK) and transmit frame sync signal (SFS). This allows the pins used for the receive bit clock (SRCLK) and receive frame sync (SRFS) to be used as additional frame sync signals in network mode. The extra frame sync signals are useful when the audio interface communicates to more than one codec, because codecs typically start transmission immediately after the frame sync pulse. The SRCLK pin is driven with a frame sync pulse at the beginning of the second slot (slot 1), and the SRFS pin is driven with a frame sync pulse at the beginning of slot 2. Figure 23-5 shows a frame timing diagram for this configuration, using the additional frame sync signals on SRCLK and SRFS to address up to three devices.

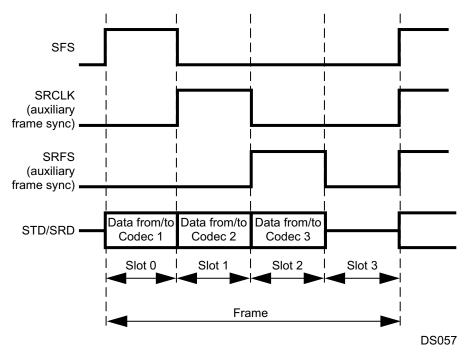


Figure 23-5. Accessing Three Devices in Network Mode

23.3 BIT CLOCK GENERATION

An 8-bit prescaler is provided to divide the audio interface input clock down to the required bit clock rate. Software can choose between two input clock sources, Auxiliary Clock 1 and Auxiliary Clock 8.

The input clock is divided by the value of the prescaler BCPRS7:0 + 1 to generate the bit clock.

The bit clock rate f_{bit} can be calculated by the following equation:

$f_{bit} = n x f_{sample} x Data Length$	(12)
n = Number of Slots per Frame	(13)
f _{Sample} = Sample Frequency in Hz	(14)
The ideal required prescaler value Pideal can be calculated as follows:	
$P_{ideal} = f_{Audio} \ln / f_{bit}$	(15)
f _{Audio In} = Source Clock Frequency in Hz	(16)
Data Length = Length of data word in multiples of 8 bits	
The ideal required prescaler value P _{ideal} can be calculated as follows:	
$P_{ideal} = f_{Audio In} / f_{bit}$	(17)
f _{Audio In} = Source Clock Frequency in Hz	(18)

Example:

The audio interface is used to transfer 13-bit linear PCM data for one audio channel at a sample rate of 8k samples per second. The input clock of the audio interface is 12 MHz. Furthermore, the codec requires a minimum bit clock of 256 kHz to operate properly. Therefore, the number of slots per frame must be set to 2 (network mode) although actually only one slot (slot 0) is used. The codec and the audio interface will put their data transmit pins in TRI-STATE mode after the PCM data word has been transferred. The required bit clock rate f_{bit} can be calculated by the following equation:

$$f_{bit} = n \times f_{Sample} \times Data Length = 2 \times 8 \text{ kHz} \times 16 = 256 \text{ kHz}$$
 (19)

The ideal required prescaler value P_{ideal} can be calculated as follows:

$P_{ideal} = f_{Audio In} / f_{bit} = 12 MHz / 256 kHz = 46.875$										(20)										
							—													

Therefore, the real prescaler value is 47. This results in a bit clock error equal to: $f_{bit error} = (f_{bit} - f_{Audio In} / P_{real}) / f_{bit} \times 100 = (256 \text{ kHz} - 12 \text{ MHz}/47) / 256 \text{ kHz} \times 100 = 0.27\%$ (21)

23.4 FRAME CLOCK GENERATION

The clock for the frame synchronization signals is derived from the bit clock of the audio interface. A 7-bit prescaler is used to divide the bit clock to generate the frame sync clock for the receive and transmit operations. The bit clock is divided by FCPRS + 1. In other words, the value software must write into the ACCR.FCPRS field is equal to the bit number per frame minus one. The frame may be longer than the valid data word but it must be equal to or larger than the 8- or 16-bit word. Even if 13-, 14-, or 15-bit data is being used, the frame width must always be at least 16 bits wide.

In addition, software can specify the length of a long frame sync signal. A long frame sync signal can be either 6, 13, 14, 15, or 16 bits long, depending on the external codec being used. The frame sync length can be configured by the Frame Sync Length field (FSL) in the AGCR register.

23.5 AUDIO INTERFACE OPERATION

23.5.1 Clock Configuration

An auxiliary clock (generated by the Clock module described in Section 14) must be configured to provide a 12 MHz input clock as a time base for the AAI module. The CSS bit in the ACCR register selects whether the input clock is Auxiliary Clock 1 or Auxiliary Clock 8.

23.5.2 Interrupts

The interrupt logic of the AAI combines up to four interrupt sources and generates one interrupt request signal to the Interrupt Control Unit (ICU).

The four interrupt sources are:

- RX FIFO Overrun AISCR.RXEIP = 1
- RX FIFO Almost Full (Warning Level) AISCR.RXIP = 1
- TX FIFO Under run AISCR.TXEIP = 1
- TX FIFO Almost Empty (Warning Level) AISCR.TXIP=1

In addition to the dedicated input to the ICU for handling these interrupt sources, the Serial Frame Sync (SFS) signal is the WUI26 input to the MIWU (see Section 17), which can be programmed to assert edge-triggered interrupts.

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

Table 31-1 shows the interrupt structure of the AAI.

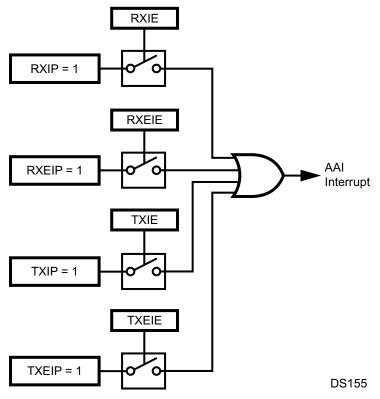


Figure 23-6. AAI Interrupt Structure

23.5.3 Normal Mode

In normal mode, each frame sync signal marks the beginning of a new frame and also the beginning of a new slot, since each frame only consists of one slot. All 16 receive and transmit FIFO locations hold data for the same (and only) slot of a frame. If 8-bit data are transferred, only the low byte of each 16-bit FIFO location holds valid data.

23.5.4 Transmit

Once the interface has been enabled, transmit transfers are initiated automatically at the beginning of every frame. The beginning of a new frame is identified by a frame sync pulse. Following the frame sync pulse, the data is shifted out from the ATSR to the STD pin on the positive edge of the transmit data shift clock (SCK).

DMA Operation

When a complete data word has been transmitted through the STD pin, a new data word is reloaded from the transmit DMA register 0 (ATDR0). A DMA request is asserted when the ATDR0 register is empty. If a new data word must be transmitted while the ATDR0 register is still empty, the previous data will be re-transmitted.

FIFO Operation

When a complete data word has been transmitted through the STD pin, a new data word is loaded from the transmit FIFO from the current location of the Transmit FIFO Read Pointer (TRP). After that, the TRP is automatically incremented by 1.

A write to the Audio Transmit FIFO Register (ATFR) results in a write to the transmit FIFO at the current location of the Transmit FIFO Write Pointer (TWP). After every write operation to the transmit FIFO, TWP is automatically incremented by 1.

When the TRP is equal to the TWP and the last access to the FIFO was a read operation (a transfer to the ATSR), the transmit FIFO is empty. When an additional read operation from the FIFO to ATSR is performed (while the FIFO is already empty), a transmit FIFO underrun occurs. In this event, the read pointer (TRP) will be decremented by 1 (incremented by 15) and the previous data word will be transmitted again. A transmit FIFO underrun is indicated by the TXU bit in the Audio Interface Transmit Status and Control Register (ATSCR). Also, no transmit interrupt will be generated.

When the TRP is equal to the TWP and the last access to the FIFO was a write operation (to the ATFR), the FIFO is full. If an additional write to ATFR is performed, a transmit FIFO overrun occurs. This error condition is not prevented by hardware. Software must ensure that no transmit overrun occurs.

The transmit frame synchronization pulse on the SFS pin and the transmit shift clock on the SCK pin may be generated internally, or they can be supplied by an external source.

23.5.5 Receive

At the receiver, the received data on the SRD pin is shifted into ARSR on the negative edge of SRCLK (or SCK in synchronous mode), following the receive frame sync pulse, SRFS (or SFS in synchronous mode).

DMA Operation

When a complete data word has been received through the SRD pin, the new data word is copied to the receive DMA register 0 (ARDR0). A DMA request is asserted when the ARDR0 register is full. If a new data word is received while the ARDR0 register is still full, the ARDR0 register will be overwritten with the new data.

FIFO Operation

When a complete word has been received, it is transferred to the receive FIFO at the current location of the Receive FIFO Write Pointer (RWP). Then, the RWP is automatically incremented by 1.

A read from the Audio Receive FIFO Register (ARFR) results in a read from the receive FIFO at the current location of the Receive FIFO Read Pointer (RRP). After every read operation from the receive FIFO, the RRP is automatically incremented by 1.

When the RRP is equal to the RWP and the last access to the FIFO was a copy operation from the ARFR, the receive FIFO is full. When a new complete data word has been shifted into ARSR while the receive FIFO was already full, the shift register overruns. In this case, the new data in the ARSR will not be copied into the FIFO and the RWP will not be incremented. A receive FIFO overrun is indicated by the RXO bit in the Audio Interface Receive Status and Control Register (ARSCR). No receive interrupt will be generated.

When the RWP is equal to the RRP and the last access to the receive FIFO was a read from the ARFR, a receive FIFO underrun has occurred. This error condition is not prevented by hardware. Software must ensure that no receive underrun occurs.

The receive frame synchronization pulse on the SRFS pin (or SFS in synchronous mode) and the receive shift clock on the SRCLK (or SCK in synchronous mode) may be generated internally, or they can be supplied by an external source.

23.5.6 Network Mode

In network mode, each frame sync signal marks the beginning of new frame. Each frame can consist of up to four slots. The audio interface operates in a similar way to normal mode, however, in network mode the transmitter and receiver can be assigned to specific slots within each frame as described below.

23.5.7 Transmit

The transmitter only shifts out data during the assigned slot. During all other slots the STD output is in TRI-STATE mode.

DMA Operation

When a complete data word has been transmitted through the STD pin, a new data word is reloaded from the corresponding transmit DMA register n (ATDRn). A DMA request is asserted when ATDRn is empty. If a new data word must be transmitted in a slot n while ATDRn is still empty, the previous slot n data will be retransmitted.

FIFO Operation

When a complete data word has been transmitted through the STD pin, a new data word is reloaded from the transmit FIFO from the current location of the Transmit FIFO Read Pointer (TRP). After that, the TRP is automatically incremented by 1. Therefore, the audio data to be transmitted in the next slot of the frame is read from the next FIFO location.

A write to the Audio Transmit FIFO Register (ATFR) results in a write to the transmit FIFO at the current location of the Transmit FIFO Write Pointer (TWP). After every write operation to the transmit FIFO, the TWP is automatically incremented by 1.

When the TRP is equal to the TWP and the last access to the FIFO was a read operation (transfer to the ATSR), the transmit FIFO is empty. When an additional read operation from the FIFO to the ATSR is performed (while the FIFO is already empty), a transmit FIFO underrun occurs. In this case, the read pointer (TRP) will be decremented by 1 (incremented by 15) and the previous data word will be transmitted again. A transmit FIFO underrun is indicated by the TXU bit in the Audio Interface Transmit Status and Control Register (ATSCR). No transmit interrupt will be generated (even if enabled).

If the current TRP is equal to the TWP and the last access to the FIFO was a write operation (to the ATFR), the FIFO is full. If an additional write to the ATFR is performed, a transmit FIFO overrun occurs. This error condition is not prevented by hardware. Software must ensure that no transmit overrun occurs.

The transmit frame synchronization pulse on the SFS pin and the transmit shift clock on the SCK pin may be generated internally, or they can be supplied by an external source.

23.5.8 Receive

The receive shift register (ARSR) receives data words of all slots in the frame, regardless of the slot assignment of the interface. However, only those ARSR contents are transferred to the receive FIFO or DMA receive register which were received during the assigned time slots. A receive interrupt or DMA request is initiated when this occurs.

DMA Operation

When a complete data word has been received through the SRD pin in a slot n, the new data word is transferred to the corresponding receive DMA register n (ARDRn). A DMA request is asserted when the ARDRn register is full. If a new slot n data word is received while the ARDRn register is still full, the ARDRn register will be overwritten with the new data.

FIFO Operation

When a complete word has been received, it is transferred to the receive FIFO at the current location of the Receive FIFO Write Pointer (RWP). After that, the RWP is automatically incremented by 1. Therefore, data received in the next slot is copied to the next higher FIFO location.

A read from the Audio Receive FIFO Register (ARFR) results in a read from the receive FIFO at the current location of the Receive FIFO Read Pointer (RRP). After every read operation from the receive FIFO, the RRP is automatically incremented by 1.

When the RRP is equal to the RWP and the last access to the FIFO was a transfer to the ARFR, the receive FIFO is full. When a new complete data word has been shifted into the ARSR while the receive FIFO was already full, the shift register overruns. In this case, the new data in the ARSR will not be transferred to the FIFO and the RWP will not be incremented. A receive FIFO overrun is indicated by the RXO bit in the Audio Interface Receive Status and Control Register (ARSCR). No receive interrupt will be generated (even if enabled).

www.ti.com

When the current RWP is equal to the TWP and the last access to the receive FIFO was a read from ARFR, a receive FIFO underrun has occurred. This error condition is not prevented by hardware. Software must ensure that no receive underrun occurs.

The receive frame synchronization pulse on the SRFS pin (or SFS in synchronous mode) and the receive shift clock on the SRCLK (or SCK in synchronous mode) may be generated internally, or they can be supplied by an external source.

23.6 COMMUNICATION OPTIONS

23.6.1 Data Word Length

The word length of the audio data can be selected to be either 8 or 16 bits. In 16-bit mode, all 16 bits of the transmit and receive shift registers (ATSR and ARSR) are used. In 8- bit mode, only the lower 8 bits of the transmit and receive shift registers (ATSR and ARSR) are used.

23.6.2 Frame Sync Signal

The audio interface can be configured to use either long or short frame sync signals to mark the beginning of a new data frame. If the corresponding Frame Sync Select (FSS) bit in the Audio Control and Status register is clear, the receive and/or transmit path generates or recognizes short frame sync pulses with a length of one bit shift clock period. When these short frame sync pulses are used, the transfer of the first data bit or the first slot begins at the first positive edge of the shift clock after the negative edge on the frame sync pulse.

If the corresponding Frame Sync Select (FSS) bit in the Audio Control and Status register is set, the receive and/or transmit path generates or recognizes long frame sync pulses. For 8-bit data, the frame sync pulse generated will be 6 bit shift clock periods long, and for 16-bit data the frame sync pulse can be configured to be 13, 14, 15, or 16 bit shift clock periods long. When receiving frame sync, it should be active on the first bit of data and stay active for a least two bit clock periods. It must go low for at least one bit clock period before starting a new frame. When long frame sync pulses are used, the transfer of the first word (first slot) begins at the first positive edge of the bit shift clock after the positive edge of the frame sync pulse. Figure 23-7 shows examples of short and long frame sync pulses.

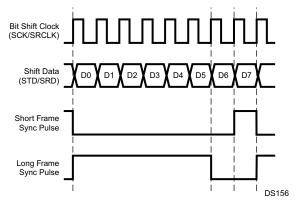


Figure 23-7. Short and Long Frame Sync Pulses

Some codecs require an inverted frame sync signal. This is available by setting the Inverted Frame Sync bit in the AGCR register.

23.6.3 Audio Control Data

The audio interface provides the option to fill a 16-bit slot with up to three data bits if only 13, 14, or 15 PCM data bits are transmitted. These additional bits are called audio control data and are appended to the PCM data stream. The AAI can be configured to append either 1, 2, or 3 audio control bits to the PCM data stream. The number of audio data bits to be used is specified by the 2-bit Audio Control On (ACO) field. If the ACO field is not equal to 0, the specified number of bits are taken from the Audio Control Data field (ACD) and appended to the data stream during every transmit operation. The ADCO bit is the first bit added to the transmit data stream after the last PCM data bit. Typically, these bits are used for gain control, if this feature is supported by the external PCM codec. Figure 23-8 shows a 16-bit slot comprising a 13-bit PCM data word plus three audio control bits.

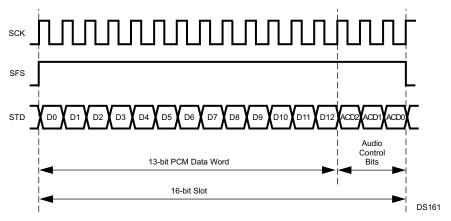


Figure 23-8. Audio Slot with Audio Control Data

23.6.4 IOM-2 Mode

The AAI can operate in a special IOM-2 compatible mode to allow to connect to an external ISDN controller device. In this IOM-2 mode, the AAI can only operate as a slave, that is, the bit clock and frame sync signal is provided by the ISDN controller. The AAI only supports the B1 and B2 data of the IOM-2 channel 0, but ignores the other two IOM-2 channels. The AAI handles the B1 and B2 data as one 16-bit data word.

The IOM-2 interface has the following properties:

- Bit clock of 1536 kHz (output from the ISDN controller)
- Frame repetition rate of 8 ksps (output from the ISDN controller)
- Double-speed bit clock (one data bit is two bit clocks wide)
- B1 and B2 data use 8-bit log PCM format
- Long frame sync pulse

TEXAS INSTRUMENTS

www.ti.com

Figure 23-9 shows the structure of an IOM-2 Frame.

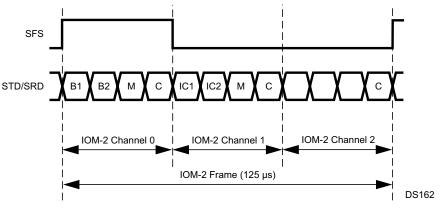


Figure 23-9. IOM-2 Frame Strcuture

Figure 23-10 shows the connections between an ISDN controller and a CP3CN37 using a standard IOM-2 interface for the B1/B2 data communication and the external bus interface (IO Expansion) for controlling the ISDN controller.

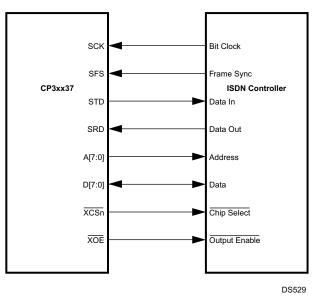


Figure 23-10. CP3CN37/ISDN Controller Connections

To connect the AAI to an ISDN controller through an IOM-2 compatible interface, the AAI needs to be configured in this way:

- The AAI must be in IOM-2 Mode (AGCR.IOM2 = 1).
- The AAI operates in synchronous mode (AGCR.ASS = 0).
- The AAI operates as a slave, therefore the bit clock and frame sync source selection must be set to external (ACGR.IEFS = 1, ACGR.IEBC = 1).
- The frame sync length must be set to long frame sync (ACGR.FSS = 1).
- The data word length must be set to 16-bit (AGCR.DWL = 1).
- The AAI must be set to normal mode (AGCR.SCS[1:0] = 0).

CP3CN37

23.6.5 Loopback Mode

In loopback mode, the STD and SRD pins are internally connected together, so data shifted out through the ATSR register will be shifted into the ARSR register. This mode may be used for development, but it also allows testing the transmit and receive path without external circuitry, for example during Built-In-Self-Test (BIST).

23.6.6 Freeze Mode

When the Freeze mode is entered, the audio interface exhibits the following behavior:

- The receive FIFO or receive DMA registers are not updated with new data.
- The receive status bits (RXO, RXE, RXF, and RXAF) are not changed, even though the receive FIFO
 or receive DMA registers are read.
- The transmit shift register (ATSR) is not updated with new data from the transmit FIFO or transmit DMA registers.
- The transmit status bits (TXU, TXF, TXE, and TXAE) are not changed, even though the transmit FIFO or transmit DMA registers are written.

23.7 AUDIO INTERFACE REGISTERS

Table	23-1.	Audio	Interface	Registers
-------	-------	-------	-----------	-----------

Name	Address	Description
ARFR	FF 5000h	Audio Receive FIFO Register
ARDR0	FF 5004h	Audio Receive DMA Register 0
ARDR1	FF 5008h	Audio Receive DMA Register 1
ARDR2	FF 500Ch	Audio Receive DMA Register 2
ARDR3	FF 5010h	Audio Receive DMA Register 3
ATFR	FF 5014h	Audio Transmit FIFO Register
ATDR0	FF 5018h	Audio Transmit DMA Register 0
ATDR1	FF 501Ch	Audio Transmit DMA Register 1
ATDR2	FF 5020h	Audio Transmit DMA Register 2
ATDR3	FF 5024h	Audio Transmit DMA Register 3
AGCR	FF 5028h	Audio Global Configuration Register
AISCR	FF 502Ch	Audio Interrupt Status and Control Register
ARSCR	FF 5030h	Audio Receive Status and Control Register
ATSCR	FF 5034h	Audio Transmit Status and Control Register
ACCR	FF 5038h	Audio Clock Control Register
ADMACR	FF 503Ch	Audio DMA Control Register

www.ti.com

23.7.1 Audio Receive FIFO Register (ARFR)

The Audio Receive FIFO register shows the receive FIFO location currently addressed by the Receive FIFO Read Pointer (RRP). The receive FIFO receives 8-bit or 16-bit data from the Audio Receive Shift Register (ARSR), when the ARSR is full.

In 8-bit mode, only the lower byte of the ARFR is used, and the upper byte contains undefined data. In 16bit mode, a 16-bit word is copied from ARSR into the receive FIFO. The APB bus master has read-only access to the receive FIFO, represented by the ARFR register. After reset, the receive FIFO (ARFR) contains undefined data.

7	0
	ARFL
15	8
	ARFH
ARFL	The Audio Receive FIFO Low Byte shows the lower byte of the receive FIFO location cur- rently addressed by the Receive FIFO Read Pointer (RRP).

ARFH The Audio Receive FIFO High Byte shows the upper byte of the receive FIFO location cur- rently addressed by the Receive FIFO Read Pointer (RRP). In 8-bit mode, ARFH contains undefined data.

23.7.2 Audio Receive DMA Register n (ARDRn)

The ARDRn register contains the data received within slot n, assigned for DMA support. In 8-bit mode, only the lower 8-bit portion of the ARDRn register is used, and the upper byte contains undefined data. In 16-bit mode, a 16-bit word is transferred from the Audio Receive Shift Register (ARSR) into the ARDRn register. The APB bus master, typically a DMA controller, has read-only access to the receive DMA registers. After reset, these registers are clear.

7	0
	ARDL
15	8
	ARDH
ARDL	The Audio Receive DMA Low Byte field receives the lower byte of the audio data copied from the ARSR.
ARDH	In 16-bit mode, the Audio Receive DMA High Byte field receives the upper byte of the audio data word copied from

ARSR. In 8-bit mode, the ARDH register holds undefined data.

23.7.3 Audio Transmit FIFO Register (ATFR)

The ATFR register shows the transmit FIFO location currently addressed by the Transmit FIFO Write Pointer (TWP). The Audio Transmit Shift Register (ATSR) receives 8-bit or 16-bit data from the transmit FIFO, when the ATSR is empty. In 8-bit mode, only the lower 8-bit portion of the ATSR is used, and the upper byte is ignored (not transferred into the ATSR). In 16-bit mode, a 16-bit word is copied from the transmit FIFO into the ATSR. The APB bus master has write-only access to the transmit FIFO, represented by the ATFR register. After reset, the transmit FIFO (ATFR) contains undefined data.

7	0	
	ATFL	
15	8	
	ATFH	
ATFL	The Audio Transmit Low Byte field represents the lower byte of the transmit FIFO location currently addressed by the	Э

The Audio Transmit Low Byte field represents the lower byte of the transmit FIFO location currently addressed by the Transmit FIFO Write Pointer (TWP).

ATFH In 16-bit mode, the Audio Transmit FIFO High Byte field represents the upper byte of the transmit FIFO location currently addressed by the Transmit FIFO Write Pointer (TWP). In 8- bit mode, the ATFH field is not used.

23.7.4 Audio Transmit DMA Register n (ATDRn)

The ATDRn register contains the data to be transmitted in slot n, assigned for DMA support. In 8-bit mode, only the lower 8-bit portion of the ATDRn register is used, and the upper byte is ignored (not transferred into the ATSR). In 16- bit mode, the whole 16-bit word is transferred into the ATSR. The APB bus master, typically a DMA controller, has writeonly access to the transmit DMA registers. After reset, these registers are clear.

7		0
	ATFL	
15		8
	ATDH	
ATDL	The Audio Transmit DMA Low Byte field holds the lower byte of the audio data.	
ATDH	In 16-bit mode, the Audio Transmit DMA High Byte field holds the upper byte of the audio data word. In 8-bit m ATDH field is ignored.	ode, the

23.7.5 Audio Global Configuration Register (AGCR)

The AGCR register controls the basic operation of the interface. The APB bus master has read/write access to the AGCR register. After reset, this register is clear.

7	6	5	4	3	2	1	0
IEBC	FSS	IEFS	S	CS	LPB	DWL	ASS
15	14	13	12	11	10	9	8
CLKEN	AAIEN	IOM2	IFS	FS	SL	CTF	CRF
ASS	The Asynchronous/Synchronous Mode Select bit controls whether the audio interface operates in Asynchronous or in Synchronous mode. 0 – Synchronous mode. 1 – Asynchronous mode.						ronous or in
DWL	The Data Word L 0 – 8-bit length. 1 – 16-bit length.	0	whether the data	word has a length	n of 8 or 16 bits.		

CP3CN37

	JANUARY 2007-REVIS			www.ti.co
LPB		ear, so by default t node disabled.	p back mode. In this mode, the SRD and STI he loop back mode is disabled.	J pins are internally connected. After reset
SCS			es the number of slots within each frame. If the mal mode. If the number of slots per frame is	
	SCS	Number of Slots per Frame	Mode	
	00	1	Normal mode	
	01	2	Normal mode	
	10	3	Network mode	
	11	4	Network mode	
IEFS	generated interr 0 – Internal fran			r the receiver and transmitter are
FSS	synchronization 0 – Short (bit lei			tter) uses long or short frame
IEBC		n external source. clock.	controls whether the bit clocks for receiver ar	nd transmitter are generated internally or
CRF	FIFO are set to 0 has no effect.		d to clear the receive FIFO. When this bit is v fter updating the pointers, the CRF bit will aut FO.	
CTF	The Clear Trans FIFO are set to 0 – Writing 0 ha	smit FIFO bit is use their reset state. A	d to clear the transmit FIFO. When this bit is fter updating the pointers, the CTF bit will aut	
FSL		16-bit data word I	ifies the length of the frame synchronization s ength (DWL = 1) are used. If an 8-bit data wo	
	FSL	Frame Sy	nc Length	
	00	13 bit	clocks	
	01	14 bit	clocks	
	10	15 bit	clocks	
	11	16 bit	clocks	
IFS	0 – Active-high	ame Sync bit contr frame sync signal. rame sync signal.	ols the polarity of the frame sync signal.	
IOM2	controller device are provided by	es. The AAI can or the ISDN controlle rnal PCM codecs a disabled.	ormal PCM interface mode or a special IOM-2 ly operate as a slave in the IOM-2 mode, tha r. If the IOM2 bit is clear, the AAI operates in nd other PCM audio devices.	t is, the bit clock and frame sync signals
AAIEN	The AAI Enable remain accessit 0 – AAI module 1 – AAI module	ble. disabled.	er the Advanced Audio Interface is enabled.	When the AAI is disabled, all AAI registers
CLKEN	The Clock Enab	le bit controls whe any AAI register. I clock disabled.	ther the Advanced Audio Interface clock is er must also be set before any other bit of the a	

23.7.6 Audio Interrupt Status and Control Register (AISCR)

The AISCR register is used to specify the source and the conditions, when the audio interface interrupt is asserted to the Interrupt Control Unit. It also holds the interrupt pending bits and the corresponding interrupt clear bits for each audio interface interrupt source. The APB bus master has read/ write access to the AISCR register. After reset, this register is clear.

7	6	5	4	3	2	1	0
TXEIP	TXIP	RXEIP	RXIP	TXEIE	TXIE	RXEIE	RXIE
15			12	11	10	9	8
	Reserved			TXEIC	TXIC	RXEIC	RXIC
RXIE	The Receive Interinterrupt will be g on a Receive inter 1 – Receive inter	rrupt disabled.	ontrols whether re	eceive interrupts a	re generated. If the	e RXIE bit is clear	, no receive
RXEIE	receive error inte interrupt will be g 0 – Receive erro	or Interrupt Enable errupt, when the Re generated. r interrupt disabled r interrupt enabled	eceive Buffer Ove 1.				
TXIE							
TXEIE	enables a transm transmit error inte 0 – Transmit error	ror Interrupt Enable nit error interrupt, v errupt will be gene or interrupt disable or interrupt enable	when the Transmi rated. d.				
RXIP					currently pending.	The RXIP bit is cl	eared by writing
RXEIP	cleared by writing 0 – No receive e	or Interrupt Pendir g a 1 to the RXEIC rror interrupt pend r interrupt pending	bit. The RXEIP			ly pending. The R	XEIP bit is
TXIP	writing a 1 to the	errupt Pending bit TXIC bit. The TXI nterrupt pending. prupt pending.			s currently pending	ι. The TXIP bit is α	cleared by
TXEIP	cleared by softwa 0 – No transmit e	terrupt Pending. T are by writing a 1 t error interrupt pend or interrupt pending	to the TXEIC bit. ding.				TXEIP bit is
RXIC	0 – Writing a 0 to	errupt Clear bit is u the RXIC bit is ig lears the RXIP bit.	nored.	RXIP bit.			
RXEIC	0 – Writing a 0 to	or Interrupt Clear b the RXEIC bit is lears the RXEIP bit	ignored.	r the RXEIP bit.			
TXIC	0 – Writing a 0 to	errupt Clear bit is to the TXIC bit is ig lears the TXIC bit is ig		TXIP bit.			
TXEIC	0 – Writing a 0 to	ror Interrupt Clear the TXEIC bit is i lears the TXEIP bi	gnored.	ar the TXEIP bit.			

TEXAS INSTRUMENTS

www.ti.com

23.7.7 Audio Receive Status and Control Register (ARSCR)

The ARSCR register is used to control the operation of the receiver path of the audio interface. It also holds bits which report the current status of the receive FIFO. The APB bus master has read/write access to the ARSCR register. At reset, this register is cleared to 0000h, but after enabling the AAI clock it becomes 0004h.

7			4	3	2	1	0
	RXS	A		RXO	RXE	RXF	RXAF
15			12	11			8
	RXF	VL			RXI	DSA	
RXAF	The Receive Buffe specified warning 0 – Receive FIFO 1 – Receive FIFO	limit. below warning li		umber of data byt	es/words in the re	ceive buffer is eq	ual to the
RXF	The Receive Buffe and the last acces 0 – Receive FIFO 1 – Receive FIFO	s was a write to the solution is not full.		ouffer is full. The F	XF bit is set wher	n the RWP is equ	al to the RRP
RXE	The Receive Buffe operation (read fro 0 – Receive FIFO 1 – Receive FIFO	om ARDR). is not empty.	t when the the R	RP is equal to the	RWP and the last	access to the FII	FO was a read
RXO	The Receive Over been shifted into A will not be copied generated. 0 – No overflow has 1 – Overflow has o	ARSR, while the into the FIFO and as occurred.	receive FIFO was	already full (the F	RXF bit was set). I	n this case, the n	ew data in ARSF
RXSA	The Receive Slot slots may be enab if a frame only cor	led. If the frame	consists of less t	han 4 slots, the R			
	The following table	e shows the slot	assignment sche	me.			
	RXSA Bit	Slot Enabled					
	RXSA0	0					
	RXSA1	1					
	RXSA2	2					
	RXSA3	3					
	After reset the RX	SA field is clear,	so software must	t load the correct s	slot assignment.		
RXDSA	The Receive DMA set for an assigner will instead be writ RMA bit is set, a I shows the DMA sl	d slot (RXŠAn = ten into the corre MA request is a	1), the data receit esponding Receives sserted. If the RX	ved within this slo ve DMA data regis (SA bit for a slot is	t will not be transfe ter (ARDRn). If the	erred into the rece e ARDRn register	eive FIFO, but is full and the
	RXDSA Bit	Slots Enabled for DMA					
	RXDSA0	0					
	RXDSA1	1					
	RXDSA2	2					
RXFWL	The Receive FIFC the number of byte a receive interrupt	es/words in the re	eceive FIFO is gr	eater than the war	ning level value. A	An RXFWL value	of 0 means that

23.7.8 Audio Transmit Status and Control Register (ATSCR)

The ATSCR register controls the basic operation of the interface. It also holds bits which report the current status of the audio communication. The APB bus master has read/ write access to the ATSCR register. At reset, this register is loaded with F000h, but after enabling the AAI clock it becomes F003h.

7		4	3	2	1	0
	TXSA		TXU	TXF	TXE	TXAE
15		12	11			8
	TXFWL			TXI	DSA	
TXAE	The Transmit FIFO Almost Empt specified warning limit. 0 – Transmit FIFO above warnin 1 – Transmit FIFO at or below w	g limit.	e number of data l	bytes/words in trar	nsmit buffer is equ	ual to the
TXE	The Transmit FIFO Empty bit is equal to the TWP and the last ac 0 – Transmit FIFO not empty. 1 – Transmit FIFO empty.				et to one every tim	e the TRP is
TXF	The Transmit FIFO Full bit is set 0 – Transmit FIFO not full. 1 – Transmit FIFO full.	when the TWP is	equal to the TRP a	and the last access	s to the FIFO was	write operation.
TXU	The Transmit Underflow bit indic FIFO was already empty and a c and the previous data will be ret 0 – Transmit underrun occurred. 1 – Transmit underrun did not oc	complete data word ransmitted. No tran	I has been transfer	red. In this case, t	the TRP will be de	
TXSA	The Transmit Slot Assignment fi pin. The STD pin is in high impe for unused slots are ignored. Fo following table shows the slot as	dance state during example, if a fram	all other slots. If th	ne frame consists	of less than 4 slot	s, the TXSA bits
	TXSA Bit	Slots	Enabled			
	TXSA0		0			
	TXSA1		1			
	TXSA2		2			
	TXSA3		3			
	After reset, the TXSA field is clea	ar, so software mus	st load the correct	slot assignment.		
TXDSA	The Transmit DMA Slot Assignm is set for an assigned slot (TXSA but will instead be read from the the ATDRn register is empty. If t DMA slot assignment scheme. T	n = 1), the data to corresponding Tra he TXSA bit for a s	be transmitted with nsmit DMA data re slot is clear, the TX	hin this slot will no egister (ATDRn). A	t be read from the DMA request is	e transmit FIFO, asserted when
	TXDSA Bit	Slots Enab	oled for DMA			
	TXDSA0		0			
	TXDSA1		1			
	TXDSA2		2			
TFWL	The Transmit FIFO Warning Lev when the number of bytes or wo Fh means that a transmit interru the TXFWL field is loaded with F	rds in the transmit ot is asserted if one	FIFO is equal or le	ss than the warnir	ng level value. A	TXFWL value of

23.7.9 Audio Clock Control Register (ACCR)

The ACCR register is used to control the bit timing of the audio interface. After reset, this register is clear.

-		0
1	1	0
	FCPRS	CSS
15		8
	BCPRS	
CSS	The Clock Source Select bit selects one out of two possible clock sources for the audio interface. 0 – Auxiliary Clock 1. 1 – Auxiliary Clock 8.	
FCPRS	The Frame Clock Prescaler is used to divide the bit clock to generate the frame clock for the receive an operations. The bit clock is divided by (FCPRS + 1). After reset, the FCPRS field is clear. The maximum rate to achieve an 8 kHz frame clock is 1024 kHz. This value must be set correctly even if the frame syr externally.	n allowed bit clock
BCPRS	The Bit Clock Prescaler is used to divide the audio interface clock (selected by the CSS bit) to generate the receive and transmit operations. The audio interface input clock is divided by (BCPRS + 1). After results are clear.	

23.7.10 Audio DMA Control Register (ADMACR)

The ADMACR register is used to control the DMA support of the audio interface. In addition, it is used to configure the automatic transmission of the audio control bits. After reset, this register is clear.

7		4	3		0
	TMD			RMD	
15	13	12	11	10	8
Res	served	AC	0		ACD

The Receive Master DMA field specify which slots (audio channels) are supported by DMA, that is, when a DMA request is asserted to the DMA controller. If the RMDn bit is set for an assigned slot (RXDSAn = 1), a DMA request is asserted when the ARDRn register is full. If the RXDSAn bit for a slot is clear, the RMDn bit is ignored. The following table shows the receive DMA request scheme.

RMD	DMA Request Condition
0000	None
0001	ARDR0 full
0010	ARDR1 full
0011	ARDR0 full or ARDR1 full
x1xx	Not supported on CP3CN37
1xxx	Not supported on CF3CN37

TMD

RMD

The Transmit Master DMA field specifies which slots (audio channels) are supported by DMA, that is, when a DMA request is asserted to the DMA controller. If the TMD field is set for an assigned slot (TXDSAn = 1), a DMA request is asserted when the ATDRn register is empty. If the TXDSA bit for a slot is clear, the TMD field is ignored. The following table shows the transmit DMA request scheme.

TMD Field	DMA Request Condition
0000	None
0001	ATDR0 empty
0010	ATDR1 empty
0011	ATDR0 empty or ATDR1 empty
x1xx	Not ourported on CD2CN27
1xxx	Not supported on CP3CN37

ACD The Audio Control Data field is used to fill the remaining bits of a 16-bit slot if only 13, 14, or 15 bits of PCM audio data are transmitted.

ACO	The Audio Control Output field controls the number of control bits appended to the PCM data word.	
	00 – No Audio Control bits are appended.	
	01 – Append ACD0.	

- 10 Append ACD1:0.
 - 11 Append ACD2:0.

23.8 USAGE EXAMPLE

The following example shows the AAI being used to interface to two single-channel codecs. The interface has the following characteristics:

- Synchronous mode
- 8-bit data word
- Network mode with 4 slots per frame
- Slot 0 is assigned for Audio interface Codec 1 communication (receive and transmit)
- Slot 1 assigned for Audio interface Codec 2 communication (receive and transmit)
- Slots 2 and 3 unused
- Internal long frame synch pulse
- Internal shift clock, adjusted to achieve a 64 kb/s log PCM audio quality
- Frame rate set to 8 kHz (see below)
- Bit clock set to 256 kHz (see below)

It is not currently possible for the AAI to produce an exact 8 kHz frame rate together with an exact 256 kHz bit rate from a 12-MHz clock input. If this is used in a system containing a component that requires data at a frame rate of precisely 8 kHz (including the CVSD/PCM converter), then an audio artifact may be produced. If a PLL clock generator is available, it can be used to provide an input clock of the frequency required to provide suitable derivative frequencies.

Figure 23-11 shows the connections between the AAI and the external codecs. Figure 23-12 shows the timing of the interface.

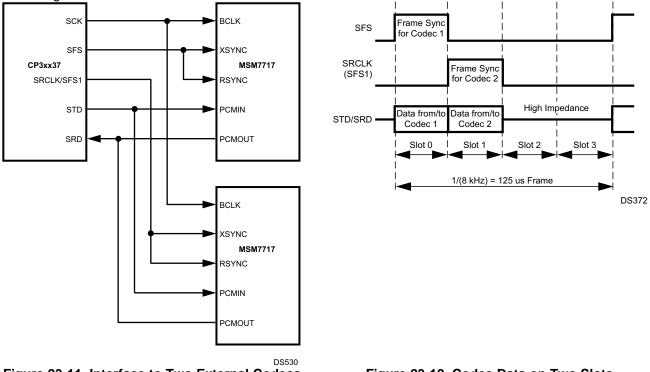


Figure 23-12. Codec Data on Two Slots

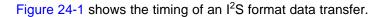
24 I²S INTERFACE

The Inter-IC Sound (I^2S) bus is a popular 3-wire serial bus for interface to audio chips, such as codecs. This is a simple data interface, without any form of address or device selection. On an I^2S bus, there is only one bus master and one transmitter, but the master is not necessarily a transmitter or a receiver. The master may be a transmitter, a receiver, or a controller for data transfers between other devices acting as transmitter and receiver. In high-quality audio applications involving a codec, the codec is typically the

The I²S bus carries two channels, left and right, which are typically used to carry stereo audio data streams. The data alternates between left and right channels, as controlled by a word select signal driven by the bus master.

Four 8-level FIFOs are provided to buffer the receive and transmit directions of the two channels. Programmable thresholds are provided to trigger interrupt or DMA requests when the FIFOs require loading or unloading.

The I²S module provides a three-pin unidirectional or fourpin bidirectional serial interface consisting of:


- Serial Clock (I2SCLK)—bit clock for serial data transfer. The transmitter drives the data on the falling edge. The receiver latches the data on the rising edge. The bus master drives this signal.
- Word Select (I2SSWS)—alternately selects between left and right channels, and defines the beginning and end of a word. The high and low phases must be equal length. The bus master drives this signal.
- Serial Data (I2SSDI and I2SSDO)—bit stream between the transmitter and receiver. The MSB is always sent first. In the CP3CN37 implementation, separate pins are provided for serial data input (I2SSDI) and serial data output (I2SSDO).
- The I²S module supports three common audio interface formats:

The I²S module supports three common audio interface formats:

- I²S Format—MSB transmitted one clock period after I2SSWS toggles. I2SSWS is low for the left channel and high for the right channel.
- Left-Justified Format—MSB transmitted following the clock edge when I2SSWS toggles. I2SSWS is high for the left channel and low for the right channel.
- **Right-Justified Format**—LSB transmitted during the clock period before I2SSWS toggles. I2SSWS is high for the left channel and low for the right channel.

The number of data bits is programmable from 8 to 24 bits per word, and the word length is programmable from 8 to 32 bits. The data is positioned in the word according to the format. In the left-justified and l^2S formats, the data starts with the MSB in the first or second clock periods, respectively. If the word length is less than the number of data bits, the trailing LSBs are truncated. In the right-justified format, the number of data bits and the word length are used to determine when to start sending or receiving the data bits, so it is critical to program these values correctly. In this format, the word length must be longer than the number of data bits, otherwise the transceiver will default to left-justified mode.

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

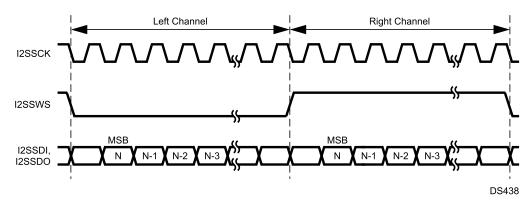


Figure 24-1. I²S Format

Figure 24-2 shows the timing of a left-justified data transfer.

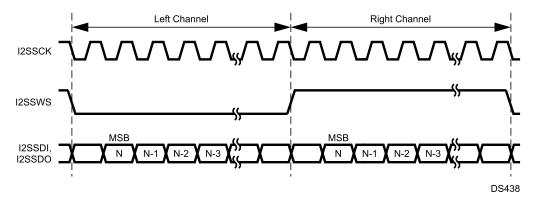


Figure 24-2. Left-Justified Format

Figure 24-3 shows the timing of a right-justified data transfer.

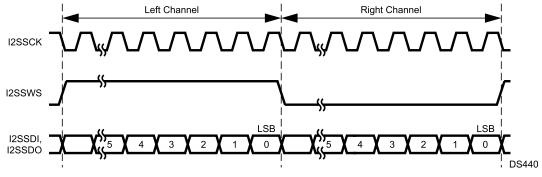


Figure 24-3. Right-Justified Format

24.1 INTERRUPTS AND DMA

Programmable thresholds are provided for the transmit and receive FIFOs to assert interrupt or DMA requests when the transmit FIFO can accept new data or the receive FIFO needs to be unloaded.

Error interrupts may be enabled for receive FIFO overrun and transmit FIFO underrun. A receive FIFO overrun occurs on writing to a full receive FIFO. A transmit FIFO underrun occurs on reading from an empty transmit FIFO. The RXER bit in the I2SRXCTL register enables receive error interrupts, and the TXER bit enables transmit error interrupts.

To avoid a transmit FIFO underrun, the TXFIFOENL and TXFIFOENR bits allow enabling the transmit FIFOs for loading before enabling the transmitter. However, as soon as the I2SCLK and I2SSWS signals are active, the right transmit FIFO is drained. In slave mode, these signals can be disabled in the GPIO registers until transmission is required. In master mode, the MS bit can be used to control the signals.

24.2 DATA ALIGNMENT

Four alignment modes are available for the data registers, as shown in Figure 24-4. The RXALIGN field in the I2SRXCTL register specifies the receiver mode, and the TXALIGN field in the I2STXCTL register specifies the transmitter mode. If the receiver format has more bits than the mode, the least significant bits are truncated. If the transmitter format has more bits than the mode, the least significant bits are padded with the value in the LSBFILL bit.

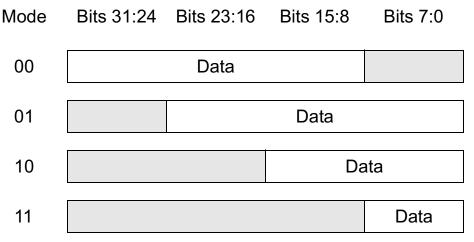


Figure 24-4. Data Register Alignment Modes

24.3 I²S INTERFACE REGISTERS

Table 24-1 lists the registers in the I^2S interface.

Table 24-1. I²S Interface Registers

Name	Address	Description
I2SCLK	FF 4000h	I ² S Clock Register
I2SRXCTL	FF 4004h	I ² S Receiver Control Register
I2STXCTL	FF 4008h	I ² S Transmitter Control Register
I2SSTAT	FF 401Ch	I ² S Status Register
I2SRXDATALEFT	FF 4014h	I ² S Receiver Left Channel Data Register
I2SRXDATARIGHT	FF 4018h	I ² S Receiver Right Channel Data Register
I2STXDATALEFT	FF 400Ch	I ² S Transmitter Left Channel Data Register
I2STXDATARIGHT	FF 4010h	I ² S Transmitter Right Channel Data Register

www.ti.com

24.3.1 *PS Clock Register (I2SCLK)*

The I2SCLK register is a 32-bit, read/write register that controls clock configuration, master/slave select, and word length. Before enabling master mode (MS bit = 1), the CLKSEL, CLKDIV, and WSRES fields must be loaded. These fields can only be loaded in slave mode (MS bit = 0), so after enabling master mode, the interface must be returned to slave mode to change any of their values. At reset, this register is initialized to 0007 0000h.

7		4	3	2	1	0	
	Reserved		MS	CLKSEL	CLM	KEN	
15						8	
		CL	KDIV				
23	21	20				16	
	Reserved			WSRES			
31						24	
		Res	served				
CLKEN	The Clock Enable bit enables clock to the module. 0 – Module disabled. 1 – Module enabled.						
CLKSEL	The Clock Select field selects the clock source for the module. 00 – PCLK Clock. 01 – Auxiliary clock 5. 10 – Reserved. 11 – Reserved.						
MS	The Master Select bit selects wheth 0 – Slave mode. 1 – Master mode.	ner the interface	is operating in ma	aster or slave mode			
CLKDIV	The Clock Select field holds the divisor (expressed in half-periods of the clock source selected by CLKSEL) for generating the I2S bus clock output I2SCLK in master mode. The field is biased by 1, so the clock source is divided by ((CLKDIV + 1) \div 2) to obtain I2SCLK. Zero is a reserved value for this field.						
WSRES	The Word Select Resolution field s master mode. The length is specific default value of 7 results in a length	ed in terms of I2	S bus clock outpu	t I2SCLK periods. T	he field is biased	by 1, so the	

www.ti.com

24.3.2 PS Receiver Control Register (I2SRXCTL)

The I2SRXCTL register is a 32-bit, read/write register that controls the I^2S receiver. At reset, this register is initialized to 0000 001Ch.

7	6				2	1	0
RXER	RXRES					RX	MOD
15	14	13	12	11	10	9	8
RXALIO	GN	Re	served	RXLD	RXRD	RXLI	RXRI
23		21	20	19	18		16
	Reserved		RXST	Res.		RXFIFOTHRESH	1
31							24
			Res	erved			
RXMOD	00 – Receive 01 – I2S form 10 – Left-just	er disabled. nat.	ects the format used	I by the receiver.			
RXRES	controls data of the receive (MSB in the o	alignment. It is ed serial data wi correct position) The field is bias	d specifies the numl particularly importa Il not be aligned. Fo , however if RXRES sed by 1, so the def	nt to set RXRES or I2S- and left-jus S specifies fewer of	correctly in right-ju stified modes, data data bits than are a	stified mode, othe will always be co available on the b	erwise the MSB prrectly aligned us, the LSBs will
RXER	to load data i	nto a full FIFO f STAT register. disabled.	s the error interrupt or the left or right cl				
RXRI	right receive	FIFO is equal to pt is indicated by disabled.	nterrupt Enable bit or less than the re y the RXRIRQ bit in	ceive FIFO thresh	hold specified in th		
RXLI	The Left Channel Receive Interrupt Enable bit enables an interrupt request when the number of empty words in the left receive FIFO is equal to or less than the receive FIFO threshold specified in the RXFIFOTHRES field. The status of the interrupt is indicated by the RXLIRQ bit in the I2SSTAT register. 0 – Interrupt disabled. 1 – Interrupt enabled.						
RXRD	The Right Channel Receive DMA Enable bit enables a DMA request when the number of empty words in the right receive FIFO is equal to or less than the receive FIFO threshold specified in the RXFIFOTHRES field. If the interrupt and DMA requests are both enabled for this condition, only the DMA request is asserted. 0 – DMA disabled. 1 – DMA enabled.						
RXLD	The Left Channel Receive DMA Enable bit enables a DMA request when the number of empty words in the left receive FIFO is equal to or less than the receive FIFO threshold specified in the RXFIFOTHRES field. If the interrupt and DMA requests are both enabled for this condition, only the DMA request is asserted. 0 – DMA disabled. 1 – DMA enabled.						
RXALIGN	The Receiver Data Alignment field controls the position of the data loaded into the I2SRXDATALEFT and I2SRXDATARIGHT data registers, as described in Section 24.2. 00 – 24-bit data loaded in upper 3 bytes. Lowest byte cleared. 01 – 24-bit data loaded in lower 3 bytes. 10 – 16-bit data loaded into lower 2 bytes. 11 – 8-bit data loaded into lowest byte.						
RXFIFOTHRESH	The Receive request is as		I specifies the numb	per of empty word	Is in the receive FI	FOs before an in	terrupt or DMA
RXST	The Receive number of en interpretation 0 – Status fie	r Status bit contr npty words in th of the RXFIFO Ids indicate the	rols whether the I2S e receive FIFOs rat THRES field or the number of filled wo number of empty w	her than the num generation of inte rds in the FIFOs.	ber of filled words. rrupt and DMA rec	This field does n	

24.3.3 PS Transmitter Control Register (I2STXCTL)

The I2STXCTL register is a 32-bit, read/write register that controls the I^2S transmitter. At reset, this register is initialized to 0000 001Ch.

7	6				2	1	0
TXER		TXRES				TXI	MOD
15	14	13	12	11	10	9	8
TXA	LIGN	TXFIFOENL	TXFIFOENR	TXLD	TXRD	TXLI	TXRI
23	22	21	20	19	18		16
Res.	LSBFILL	FLUSH	TXST	Res.		TXFIFOTHRESH	1
31							24
			Rese	erved			
TXMOD	00 – Transmi 01 – I ² S form 10 – Left-just	itter disabled. nat.	ects the format us	ed by the transm	itter.		
TXRES	justified mode leftjustified m LSBs are tru	e, TXRES must sp node. In I2S- and I ncated. The field i	becify fewer bits the eft-justified modes	nan the word leng s, if TXRES specif the default value	when the right-just th, otherwise the tr fies more data bits of 7 results in 8 bit g.	ansceiver will de than available in	fault to the word, the
TXER	attempts to u	Inload data from a IRQ bit in the I2S disabled.	in empty FIFO for		itter. A transmit errenannel. The status		
TXRI	right transmit	t FIFO is equal to interrupt is indicat disabled.		ansmit FIFO three	upt request when t shold specified in th AT register.		
TXLI	The Left Channel Transmit Interrupt Enable bit enables an interrupt request when the number of filled words in the left transmit FIFO is equal to or less than the transmit FIFO threshold specified in the TXFIFOTHRES field. The status of the interrupt is indicated by the TXLIRQ bit in the I2SSTAT register. 0 – Interrupt disabled. 1 – Interrupt enabled.						
TXRD	The Right Channel Transmit DMA Enable bit enables a DMA request when the number of filled words in the right transmit FIFO is equal to or less than the transmit FIFO threshold specified in the TXFIFOTHRES field. If the interrupt and DMA requests are both enabled for this condition, only the DMA request is asserted. 0 – DMA disabled. 1 – DMA enabled.						
TXLD	The Left Channel Transmit DMA Enable bit enables a DMA request when the number of filled words in the left transmit FIFO is equal to or less than the transmit FIFO threshold specified in the TXFIFOTHRES field. If the interrupt and DMA requests are both enabled for this condition, only the DMA request is asserted. 0 – DMA disabled. 1 – DMA enabled.						
TXFIFOENR	The Transmit FIFO Enable Right Channel bit enables the right channel transmit FIFO. The FIFO must be enabled before the transmitter, so it can be filled in advance of transmission. 0 – FIFO disabled. 1 – FIFO enabled.						
TXFIFOENL		er, so it can be fille abled.	t Channel bit enat ed in advance of t		nel transmit FIFO. ⁻	The FIFO must b	e enabled before

CP3CN37

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

TRUMENTS

TXALIGN	The Transmitter Data Alignment field controls the position of the data read from the I2STXDATALEFT and I2STXDATARIGHT data registers, as described in Section 24.2. 00 – 24-bit data read from upper 3 bytes. 01 – 24-bit data read from lower 3 bytes. 10 – 16-bit data read from lower 2 bytes. 11 – 8-bit data read from lowest byte.
TXFIFOTHRESH	The Transmit FIFO Threshold specifies the number of filled words in the transmit FIFOs before an interrupt or DMA request is asserted.
TXST	The Transmitter Status bit controls whether the I2SSTAT.TXSTATUSR and I2SSTAT.TXSTATUSL fields indicate the number of filled words in the transmit FIFOs rather than the number of empty words. This field does not affect the interpretation of the TXFIFOTHRES field or the generation of interrupt and DMA requests. 0 – Status fields indicate the number of empty words in the FIFOs. 1 – Status fields indicate the number of filled words in the FIFOs.
FLUSH	The Flush bit clears the transmit FIFOs. Software must clear the bit after flushing the FIFOs to enable normal operation. 0 – Normal operation. 1 – Transmit FIFOs are cleared.
LSBFILL	The LSB Fill bit specifies the value of trailing bits when the number of data bits is less than the number of bits in the data format.

24.3.4 PS Status Register (I2SSTAT)

The I2SSTAT register is a 32-bit, read/write register that indicates the status of I²S module and clears interrupt requests. The TXRIRQ, TXLIRQ, TXERIRQ, RXRIRQ, RXLIRQ, and RXERIRQ bits are sticky bits that remain set until the condition which sets the bit has been removed and software has cleared the bit. The state of a condition is always visible in the I2SSTAT register, but it will not assert an interrupt request unless it is enabled in the corresponding control register (either I2SRXCTL or I2STXCTL). At reset, this register is initialized to 0000 0808h.

7	6	5	4		0
TXERIRQ	TXLIRQ	TXRIRQ		TXTSTATUSR	
15	14	13	12		8
RXERIRQ	RXLIRQ	RXRIRQ		TXSTATUSL	
23		21	20		16
	WSSTATUS2:0			RXSTATUSR	
31	30	29	28		24
Reserved	WSSTA	TUS4:3		RXSTATUSL	

TXSTATUSR The Transmit FIFO Status Right Channel field indicates the current fill level of the right channel transmit FIFO. This field is not sticky, so an underrun condition may disappear before software reads this field. Use the TXERIRQ bit to determine whether a FIFO underrun has occurred. The TXST bit in the I2STXCTL register controls the interpretation of this field.

TXSTATUSR Field	TXST BIT	Description
1Fh	Х	Overrun error (written while full)
1Ef	Х	Underrun error (read while empty)
00h to 08h	0	0 to 8 empty words
00h to 08h	1	0 to 8 filled words

TXRIRQ

RQ The Transmit Right Channel Interrupt Request Pending bit is set when the I2STXCTL.TXRI bit is set and the right channel transmit FIFO fill level falls below the threshold specified in the I2STXCTL.TXFIFOTHRESH field. Once set, the TXRIRQ bit remains set until cleared by writing 1 to the bit.

0 – Interrupt request deasserted.1 – Interrupt request asserted.

TEXAS INSTRUMENTS

www.ti.com			SNOSCW8A – JANUARY 2007–REVISED DECEMBER 20
TXLIRQ		evel falls below til cleared by wr est deasserted.	upt Request Pending bit is set when the I2STXCTL.TXLI bit is set and the left channel the threshold specified in the I2STXCTL.TXFIFOTHRESH field. Once set, the TXLIRQ iting 1 to the bit.
TXERIRQ		nce set, the TXI est deasserted.	uest Pending bit is set when the I2STXCTL.TXER bit is set and either transmit FIFO has ERIRQ bit remains set until cleared by writing 1 to the bit.
TXSTATUSL	not sticky, so an ι	underrun conditie	nannel field indicates the current fill level of the left channel transmit FIFO. This field is on may disappear before software reads this field. Use the TXERIRQ bit to determine curred. The TXST bit in the I2STXCTL register controls the interpretation of this field.
	TXSTATUSL Field	TXST Bit	Description
	1Fh	Х	Overrun Error (written while full)
	1Eh	Х	Underrun error (read while empty)
	00h to 08h	0	0 to 8 empty words
	00h to 08h	1	0 to 8 filled words
RXRIRQ		evel rises above til cleared by wr est deasserted.	upt Request Pending bit is set when the I2SRXCTL.RXRI bit is set and the right chann the threshold specified in the I2SRXCTL.RXFIFOTHRESH field. Once set, the RXRIRG iting 1 to the bit.
RXLIRQ		evel rises above itil cleared by wr est deasserted.	pt Request Pending bit is set when the I2SRXCTL.RXLI bit is set and the left channel the threshold specified in the I2SRXCTL.RXFIFOTHRESH field. Once set, the RXLIRC iting 1 to the bit.
RXERIRQ		ce set, the RXE est deasserted.	est Pending bit is set when the I2SRXCTL.RXER bit is set and either receive FIFO has RIRQ bit remains set until cleared by writing 1 to the bit.
RXSTATUSR	not sticky, so an o	overrun condition	channel field indicates the current fill level of the right channel receive FIFO. This field is in may disappear before software reads this field. Use the RXERIRQ bit to determine irred. The RXST bit in the I2SRXCTL register controls the interpretation of this field.
	RXSTATUSR Field	RXST Bit	Description
	1Fh	х	Overrun error (written while full)
	1Eh	Х	Underrun error (read while empty)
	00h to 08h	0	0 to 8 filled words
	00h to 08h	1	0 to 8 empty words
RXSTATUSL	sticky, so an	overrun conditio	nannel field indicates the current fill level of the left channel receive FIFO. This field is n n may disappear before software reads this field. Use the RXERIRQ bit to determine ccurred. The RXST bit in the I2SRXCTL register controls the interpretation of this field.
	RXSTATUSL Field	RXST Bit	Description
	1Fh	Х	Overrun error (written while full)
	1Eh	х	Underrun error (read while empty)
	00h to 08h	0	0 to 8 filled words
	00h to 08h	1	0 to 8 empty words
WSSTATUS		² S bus clock I2S	cates the length of one phase of the word select signal I2SSWS in terms of the number SCLK. This is useful in slave mode, so that software can determine the number of bits

being sent by the master.

24.3.5 PS Receiver Left Channel Data Register (I2SRXDATALEFT)

The I2SRXDATALEFT register is a 32-bit, read-only register used to unload the left channel receive FIFO. At reset, this register is initialized to 0000 000h.

	0	
Reserved	Reserved	

24.3.6 PS Receiver Right Channel Data Register (I2SRXDATARIGHT)

The I2SRXDATARIGHT register is a 32-bit, read-only register used to unload the right channel receive FIFO. At reset, this register is initialized to 0000 000h.

31		0
	Reserved	

24.3.7 PS Transmitter Left Channel Data Register (I2STXDATALEFT)

The I2STXDATALEFT register is a 32-bit, write-only register used to load the left channel transmit FIFO. At reset, this register is initialized to 0000 000h.

31

Reserved

24.3.8 ^PS Transmitter Right Channel Data Register (I2STXDATARIGHT)

The I2STXDATARIGHT register is a 32-bit, write-only register used to load the right channel transmit FIFO. At reset, this register is initialized to 0000 000h.

31

Reserved

www.ti.com

0

0

NSTRUMENTS

FXAS

CP3CN37

25 DUAL CVSD/PCM CONVERSION MODULES

The CVSD/PCM modules perform conversion between CVSD data and PCM data, in which the CVSD encoding is that used in Bluetooth communication and the PCM encoding may be 8-bit µ-Law, 8-bit A-Law, or 13-bit to 16-bit linear.

A CVSD module can operate in either of two modes:

- Fixed-rate mode—125 µs (8 kHz) per PCM sample, based on a 2 MHz module clock frequency. • Intended for exchanging data with an external codec.
- Free-running mode—runs at any module clock frequency up to the PCLK Clock frequency. CVSD transcoder activity is governed by DMA acknowledgement on CVSDIN and CVSDOUT channels. Intended for exchanging PCM data over a Bluetooth channel.

On the CVSD side, read and write FIFOs buffer up to 8 words of data. On the PCM side, double-buffered registers are provided. The intended use is to move CVSD data with an interrupt handler, and to move PCM data with DMA. Figure 25-1 is a block diagram of a CVSD/PCM converter module.

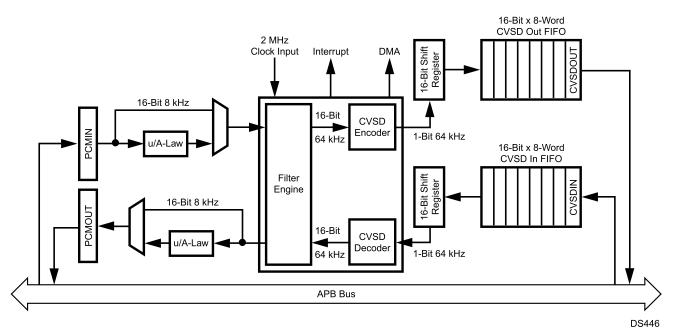


Figure 25-1. CVSD/PCM Converter Block Diagram

www.ti.com

25.1 OPERATION

In fixed-rate mode, the module converts between PCM data and CVSD data at a fixed PCM data rate of 8 kHz. Due to compression, the data rate on the CVSD side is only 4 kHz.

If PCM interrupts are enabled, every 125 μ s (8 kHz) an interrupt will occur and the interrupt handler can operate on some or all of the four audio streams: CVSD in, CVSD out, PCM in, and PCM out. Alternatively, a DMA request is issued every 125 μ s and the DMA controller is used to move the PCM data between the CVSD/PCM module and the audio interface.

If CVSD interrupts are enabled, an interrupt is issued when either one of the CVSD FIFOs is almost empty or almost full, with independently programmable FIFO threshold levels. On the PCM data side there is double buffering, and on the CVSD side there is an eight word (8×16 -bit) FIFO for the read and write paths.

Inside the module, a filter engine receives the 8-kHz stream of 16-bit samples and interpolates to generate a 64-kHz stream of 16-bit samples. This goes into a CVSD encoder which converts the data into a singlebit delta stream using the CVSD parameters as defined by the Bluetooth specification. There is a similar path that reverses this process, converting the CVSD 64-kHz bit stream into a 64-kHz 16-bit data stream. The filter engine then decimates this stream into an 8-kHz, 16-bit data stream.

25.2 PCM CONVERSIONS

During conversion between CVSD and PCM, any PCM format changes are done automatically depending on whether the PCM data is μ -Law, A-Law, or linear. In addition to this, a separate function can be used to convert between the various PCM formats as required. Conversion is performed by setting up the control bit CVCTRLn.PCMCONV to define the conversion and then writing to the LOGINn and LINEARINn registers and reading from the LOGOUTn and LINEAROUTn registers. There is no delay in the conversion operation, and it does not have to operate at a fixed rate. It will only convert between μ -Law/A-Law and linear, not directly between μ -Law and A-Law. (This could easily be performed by converting between μ -Law and linear and between linear and A-Law.)

If a conversion is performed between linear and μ -Law log PCM data, the linear PCM data are treated in the left-aligned 14-bit linear data format with the two LSBs unused. If a conversion is performed between linear and A-Law log PCM data, the linear PCM data are treated in the left-aligned 13-bit linear data format with the three LSBs unused.

If the module is only used for PCM conversions, the CVSD clock can be disabled by clearing the CVSD Clock Enable bit (CLKEN) in the control register.

25.3 CVSD CONVERSION

The CVSD/PCM converter module transforms either 8-bit logarithmic or 13- to 16-bit linear PCM samples at a fixed rate of 8 ksps. The CVSD to PCM conversion format must be specified by the CVSDCONV control bits in the CVSD Control register (CVCTRLn).

The CVSD algorithm is designed for 2's complement 16-bit data and is tuned for best performance with typical voice data. Mild distortion will occur for peak signals greater than -6 dB. The Bluetooth CVSD standard is designed for best performance with typical voice signals: nominally -6 dB with occasional peaks to 0 dB rather than full-scale inputs. Distortion of signals greater than -6 dB is not considered detrimental to subjective quality tests for voice-band applications and allows for greater clarity for signals below -6 dB. The gain of the input device should be tuned with this in mind.

If required, the RESOLUTION field of the CVCTRLn register can be used to optimize the level of the 16-bit linear input data by providing attenuations (right-shifts with sign extension) of 1, 2, or 3 bits.

Log data is always 8 bit, but to perform the CVSD conversion, the log data is first converted to 16-bit 2's complement linear data. A-law and μ -law conversion can also slightly affect the optimum gain of the input data. The CVCTRL.RESOLUTION field can be used to attenuate the data if required.

If the resolution is not set properly, the audio signal may be clipped or attenuated.

25.4 FIXED-RATE PCM-TO-CVSD CONVERSION

The converter core reads the double-buffered PCMIN register every 125 μ s and writes a new 16-bit CVSD data stream into the CVSD Out FIFO every 250 μ s. If the PCMIN buffer has not been updated with a new PCM sample between two reads from the CVSD core, the old PCM data is used again to maintain a fixed conversion rate. Once a new 16-bit CVSD data stream has been calculated, it is copied into the 8 × 16-bit wide CVSD Out FIFO.

If the number or words (16-bit) in the CVSD Out FIFO matches or exceed the threshold level, the nearly full bit (CVNF) is set, and, CVSD interrupts are enabled (CVSDINT = 1), an interrupt request is asserted.

If more data is written to the CVSD Out FIFO while the full bit (CVF) is already set, and error interrupts are enabled (CVSDERRINT = 1), an interrupt request is asserted. In this case, the CVSD Out FIFO remains unchanged. The CVF bit remains set until it is cleared by software.

Within the interrupt handler, the CPU can read out the new CVSD data. If software reads from an already empty CVSD Out FIFO, the FIFO automatically returns a checkerboard pattern to guarantee a minimum level of distortion of the audio stream.

25.5 FIXED-RATE CVSD-TO-PCM CONVERSION

The converter core reads from the CVSD In FIFO every 250 μ s and writes a new PCM sample into the PCMOUT buffer every 125 μ s. If the previous PCM data has not yet been transferred to the audio interface, it will be overwritten with the new PCM sample.

If the number or words (16-bit) in the CVSD In FIFO is less than the threshold level, the nearly empty bit (CVNE) is set, and, if CVSD interrupts are enabled (CVSDINT = 1), an interrupt request is asserted.

If the converter core reads from the CVSD In FIFO while the empty bit (CVE) is already set, and error interrupts are enabled (CVSDERRINT = 1), an interrupt request is asserted. In this case, the FIFO automatically returns a checkerboard pattern to guarantee a minimum level of distortion of the audio stream. The CVE bit remains set until it is cleared by software.

25.6 FREE-RUNNING MODE

The free-running mode of the CVSD/PCM converter is enabled by setting the CVFR, DMACI, and DMACO bits of the CVSD Control Register (CVCTRL). In this mode, the CVSD/ PCM converter is expected to be serviced by DMA operations on both its PCM and CVSD input and output channels. In contrast to the fixed-rate operating mode, the clock frequency for free-running operation is not restricted to 2 MHz. In free-running mode, activity within the CVSD/PCM transcoder is governed by the acknowledgment of DMA requests on the CVSDIN and CVSDOUT channels. If a DMA request on either of these channels goes unacknowledged then the CVSD/PCM module will stall its internal operation just before the start of the next transcoding cycle. When the outstanding DMA requests are eventually acknowledged then the CVSD/PCM module will resume its operation in a seamless fashion.

25.7 INTERRUPT GENERATION

An interrupt is asserted in any of the following cases:

- When a new PCM sample has been written into the PCMOUT register and the CVCTRLn.PCMINT bit is set.
- When a new PCM sample has been read from the PCMIN register and the CVCTRLn.PCMINT bit is set.
- When the CVSD In FIFO is nearly empty (CVSTATn.CVNE = 1) and the CVCTRLn.CVSDINT bit is set. The nearly empty threshold level is programmable in the CVIN_THRESH field of the CVTHRESHn register.
- When the CVSD Out FIFO is nearly full (CVSTATn.CVNF = 1) and the CVCTRLn.CVSDINT bit is set. The nearly full threshold level is programmable in the CVOUT_THRESH field of the CVTHRESHn register.

- When the CVSD In FIFO is empty (CVSTATn.CVE = 1) and the CVCTRLn.CVSDERRINT bit is set.
- When the CVSD Out FIFO is full (CVSTATn.CVF = 1) and the CVCTRLn.CVSDERRINT bit is set.

Both the CVSD In and CVSD Out FIFOs have a size of 8×16 bit (8 words). The threshold levels for the FIFO interrupts and DMA requests are independently programmable in the CVTHRESHn registers. The CVTHRESHn registers are included to reduce the data conversion latency when using interrupts or DMA transfers. For minimum delays on the CVSD In data path, the CVIN_THRESH field should be set to 1 so that an interrupt or DMA request is asserted each time the CVSD In FIFO is read. For minimum delays on the CVSD Out data path, the CVOUT_THRESH field should be set to 1 so that an interrupt or DMA request is asserted each time the CVSD In FIFO is read. For minimum delays on the CVSD Out data path, the CVOUT_THRESH field should be set to 1 so that an interrupt or DMA request is asserted when data is written into the CVSD Out FIFO. The default values trigger an interrupt when there are 5 or more empty words in the CVSD In FIFO or 5 or more filled words in the CVSD Out FIFO. These default values were chosen because Bluetooth audio data is transferred in packages of 10 bytes or multiples of 10 bytes.

Typically, CVSD data is handled using interrupts, and PCM data is handled using DMA. The reason for these different access methods is that PCM data can be transferred at a fixed rate without checking for overrun or underrun of data. If a PCM data overrun occurs, then a sample will be overwritten before being used. If a PCM data underrun occurs, then a sample will be repeated.

CVSD data cannot be treated in such a simple manner. If a CVSD data overrun occurs, then a sample can be overwritten as with PCM data. But if a CVSD data underrun occurs, then a checkerboard pattern must be used rather than simply repeating an old sample. This is particularly important if multiple words of data are lost.

25.8 DMA SUPPORT

Each CVSD/PCM converter has four DMA channels for processor independent operation. Both receive and transmit for CVSD data and PCM data can be enabled individually. A CVSD/PCM module asserts a DMA request to the on-chip DMA controller under the following conditions:

- The DMAPO bit is set and the PCMOUTn register is full, because it has been updated by the converter core with a new PCM sample. (The DMA controller can read out one PCM data word from the PCMOUTn register.)
- The DMAPI bit is set and the PCMINn register is empty, because it has been read by the converter core. (The DMA controller can write one new PCM data word into the PCMINn register.)
- The DMACO bit is set and a new 16-bit CVSD data stream has been copied into the CVSD Out FIFO. (The DMA controller can read out one 16-bit CVSD data word from the CVSD Out FIFO.)
- The DMACI bit is set and a 16-bit CVSD data stream has been read from the CVSD In FIFO. (The DMA controller can write one new 16-bit CVSD data word into the CVSD In FIFO.)

The DMA controller only supports indirect DMA transfers. Therefore, transferring data between a CVSD/PCM module and another on-chip module requires two bus cycles.

The trigger for DMA may also trigger an interrupt if the corresponding enable bits in the CVCTRLn register is set. Therefore, care must be taken when setting the desired interrupt and DMA enable bits. The following conditions must be avoided:

- Setting the PCMINT bit and either of the DMAPO or DMAPI bits.
- Setting the CVSDINT bit and either of the DMACO or DMACI bits.

25.9 CVSD/PCM AUDIO DATA FLOW

CVSD and PCM data can be transferred to and from the CVSD/PCM modules using DMA channels. Alternatively, CVSD data can be transferred to and from the CVSD/PCM modules by software directly accessing the FIFOs, through the CVSDINn and CVSDOUTn registers.

The CVSDOUT and CVSDIN DMA channels are linked to the operation of the CVSD/PCM module internal FIFOs. Each time the CVSDOUT FIFO reaches its almost full level of 5 entries, a DMA request is generated. Initially when the CVSDIN FIFO contains 3 or fewer entries, a single DMA transfer is requested. Further DMA requests are generated each time the CVSD In FIFO is read by the CVSD/PCM converter.

Three of the four AAI channels are supported by independent DMA channels for both the receive and transmit data paths. Figure 25-2 shows the flow of audio data when both CVSD/PCM modules are used to support data exchange between the Bluetooth LLC and two external codec channels accessed through the AAI.



Figure 25-2. CVSD/PCM To/From AAI Data Flow

The CVSD/PCM modules can operate in two basic modes: fixed-rate mode and free-run mode. In the fixed-rate mode, the clock frequency supplied to CVSD/PCM module 0 on Auxiliary Clock 2 (or Auxiliary Clock 3 for CVSD/PCM module 1) must be exactly 2 MHz. In the fixed-rate mode, the CVSD/PCM module will expect to receive 8000 PCM samples per second on its PCMIN input, and it will produce 4000 words per second on the CVSDOUT output. Each word holds 16 bits of the CVSD-encoded bit stream. It will also expect to receive 16-bit CVSD-encoded data words at a rate of 4000 per second on its CVSDIN input and will produce PCM samples at a rate of 8000 per second on its PCMOUT output.

In the free-run mode the Auxiliary Clocks can be set to any frequency up to a maximum equal to the PCLK Clock frequency. In this mode, the CVSD/PCM module will request a new PCM sample every 250 cycles of the Auxiliary Clock, and it will produce a new CVSD data word every 500 cycles of the Auxiliary Clock.

The following examples illustrate the flow of CVSD data in typical applications.

25.9.1 Dual CVSD Channels to AAI

This model is illustrated in Figure 25-3 and has the following characteristics:

- Two bidirectional CVSD channels through the Bluetooth LLC.
- PCM data received by the AAI
- CVSD/PCM conversion done on-chip.
- PCM audio data is transferred between the AAI and the CVSD/PCM module by means of DMA.
- CVSD audio data is transferred between the CVSD/PCM module and the Bluetooth RAM by means of DMA.
- CVSD/PCM modules operate in fixed-rate mode using a 2 MHz clock supplied on Auxiliary Clocks 2 and 3.

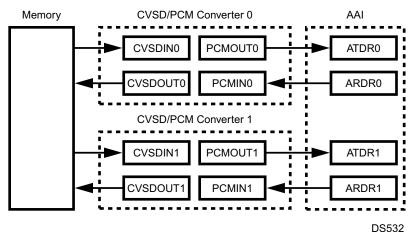


Figure 25-3. Dual CVSD Channels to AAI

PCM Transmit Data Path

The two AAI receive registers, ARDR0 and ARDR1, receive codec data for transmission over a Bluetooth link. These registers are assigned to separate DMA channels. The DMA data transfers from the AAI to the CVSD/PCM modules use indirect transfers, in which each transfer consists of two adjacent bus cycles (read/write). The operation of the ARDR0 DMA channel is described below. The ARDR1 DMA channel operates in a similar way.

The AAI requests a DMA transfer when ARDR0 is full. If ARDR0 is assigned to Device A and the DIR bit in the DMA channel control register is clear, the DMA controller reads data from ARDR0 (device A) and writes the data into the PCMIN register of CVSD0 (device B). Automatic address update (increment/decrement) must be disabled. With an audio sample rate of 8 ksps, ARDR0 will request a DMA transfer every 125 ms (every 1500 CPU clock cycles at a 12 MHz PCLK Clock rate).

PCM Receive Data Path

The two AAI transmit registers, ATDR0 and ATDR1, are assigned to separate DMA channels. The DMA data transfers from the CVSD/PCM modules to the audio interface use indirect transfers, in which each transfer consists of two adjacent bus cycles (read/write). The operation of the ATDR0 DMA channel is described below. The ARDR1 DMA channel operates in a similar way.

The AAI requests a DMA transfer when ATDR0 is empty. If ATDR0 is assigned to Device A and the DIR bit in the DMA channel control register is set, then the DMA controller reads data from the PCMOUT register of CVSD0 (device B) and writes the data into ATDR0 (device A). Automatic address update (increment/decrement) must be disabled.

With an audio sample rate of 8 ksps, ATDR0 will request a DMA transfer every 125 ms (every 1500 CPU clock cycles at a 12 MHz PCLK Clock rate).

CVSD Transmit/Receive Paths

The CVSD/PCM modules operate in their fixed-rate mode with DMA channels assigned to their CVSDINn and CVSDOUTn registers. The activation of these DMA channels is linked to the operation of the CVSDINn and CVSDOUTn FIFOs. The operation of the CVSD/PCM module 0 DMA channels is described below. The CVSD/PCM module 1 DMA channels operate in a similar way.

Initially when the CVSDIN0 FIFO contains 3 or fewer entries, a single DMA transfer is requested. Further DMA requests are generated each time the CVSDIN0 FIFO is read by the CVSD/PCM converter. If CVSDIN0 is assigned to device A and the DIR bit in the DMA channel control register is set, the DMA controller reads data from the Bluetooth RAM (device B) and writes the data into CVSDIN0 (device A). The DMA channel must be configured so that automatic update of the device A (CVSDIN0) address is disabled. The address of device B (Bluetooth RAM) must be configured to automatically increment or decrement by 2 after each DMA transfer.

When the CVSDOUT0 contains 5 entries or more, a DMA transfer is requested. If CVSDOUT0 is assigned to device A and the DIR bit in the DMA channel control register is clear, the DMA controller reads data from the CVSDOUT0 (device A) and writes the data into the Bluetooth RAM (device B).

The CVSD/PCM module introduces an effective compression ratio of 2 to 1, so an audio sample rate of 8 ksps results in DMA transfers on both the CVSDIN and CVSDOUT DMA channels at a rate of 4k transfers per second.

25.10 BUS BANDWIDTH AND LATENCY CONSIDERATIONS

The DMA controller has a burst buffer, which can be enabled on a per-channel basis. When the buffer is enabled, DMA operations occur as four-cycle burst transfers. These burst transfers optimize bus bandwidth, because they eliminate extra cycles used to arbitrate for control of the bus (as compared to four single-cycle transfers).

However, burst mode is not recommended for audio data because of its impact on latency. Three additional data words will be needed to fill the buffer, so for example at an 8 ksps rate, 3×125 ms = 375 ms additional latency.

Latency may also be impacted by competition with the CPU for access to shared resources such as the external bus interface. However, the bandwidth required even for high-quality audio signals is quite low compared to the bandwidth available from the on-chip buses. For example, a DMA transfer between two peripherals for a 48 ksps audio channel on an APB bus operating at half the speed of the CPU core bus would require $6 \times 48000 = 0.288M$ core bus cycles/ second. Compared to the 60M core bus cycles/second available on the CPU AHB bus, this is a very small number. It can become significant, however, if the core bus is operated at a low clock rate to reduce power consumption.

Access to slow external devices will not block on-chip peripheral- to-peripheral or peripheral-to-memory DMA transfers. because the EBIU has a write buffer to shield the on-chip buses from write latency and the core bus is a split-transaction bus, so reads from slow devices are non-blocking.

25.11 FREEZE MODE

When Freeze mode is entered, the CVSD/PCM converters will exhibit the following behavior:

- CVSD In FIFO will not have data removed by the converter core.
- CVSD Out FIFO will not have data added by the converter core.
- PCM Out buffer will not be updated by the converter core.

TEXAS INSTRUMENTS

www.ti.com

25.12 CVSD/PCM CONVERTER REGISTERS

Table 25-1 lists the CVSD/PCM registers.

Name	Address	Description				
CVSDIN0	FF 4800h	CVSD Data Input Register 0				
CVSDIN1	FF 4C00h	CVSD Data Input Register 1				
CVSDOUT0	FF 4804h	CVSD Data Output Register 0				
CVSDOUT1	FF 4C04h	CVSD Data Output Register 1				
PCMIN0	FF 4808h	PCM Data Input Register 0				
PCMIN1	FF 4C08h	PCM Data Input Register 1				
PCMOUT0	FF 480Ch	PCM Data Output Register 0				
PCMOUT1	FF 4C0Ch	PCM Data Output Register 1				
LOGIN0	FF 4810h	Logarithmic PCM Data Input Register 0				
LOGIN1	FF 4C10h	Logarithmic PCM Data Input Register 1				
LOGOUT0	FF 4814h	Logarithmic PCM Data Output Register 0				
LOGOUT1	FF 4C14h	Logarithmic PCM Data Output Register 1				
LINEARINO	FF 4818h	Linear PCM Data Input Register 0				
LINEARIN1	FF 4C18h	Linear PCM Data Input Register 1				
LINEAROUT0	FF 481Ch	Linear PCM Data Output Register 0				
LINEAROUT1	FF 4C1Ch	Linear PCM Data Output Register 1				
CVCTRL0	FF 4820h	CVSD Control Register 0				
CVCTRL1	FF 4C20h	CVSD Control Register 1				
CVSTAT0	FF 4824h	CVSD Status Register 0				
CVSTAT1	FF 4C24h	CVSD Status Register 1				
CVTHRESH0	FF 4840h	CVSD FIFO Threshold Register 0				
CVTHRESH1	FF 4C40h	CVSD FIFO Threshold Register 1				

Table 25-1. CVSD/PCM REGISTERS

25.12.1 CVSD Data Input Register n (CVSDINn)

The CVSDINn registers are 16-bit, write-only registers. They are used to write CVSD data into the CVSD to PCM converter FIFOs. The FIFOs are 8 words deep. The CVS- DIN bit 15 represents the CVSD data bit at $t = t_0$, CVSDIN bit 0 represents the CVSD data bit at $t = t_0$ - 250 µs.

15	0
CVSDIN	

25.12.2 CVSD Data Output Register n (CVSDOUTn)

The CVSDOUTn registers are 16-bit, read-only registers. They are used to read the CVSD data from the PCM to CVSD converter FIFOs. The FIFOs are 8 words deep. Reading a CVSDOUTn register after reset returns unde- fined data.

15

CVSDOUT

0

...

25.12.3 PCM Data Input Register n (PCMINn)

The PCMINn registers are 16-bit, write-only registers. They are used to write PCM data to the PCM to CVSD converter via the APB bus. They are double-buffered, providing a 125 μ s period for an interrupt or DMA request to respond.

15	0
PCMIN	

25.12.4 PCM Data Output Register (PCMOUTn)

The PCMOUTn registers are 16-bit, read-only registers. They are used to read PCM data from the CVSD to PCM converter. They are double-buffered, providing a 125 µs period for an interrupt or DMA request to respond. After reset the PCMOUT registers are clear.

15		0
	PCMOUT	

25.12.5 Logarithmic PCM Data Input Register n (LOGINn)

The LOGINn registers are 8-bit, write-only registers. They are used to receive 8-bit logarithmic PCM data from the APB bus and convert it into 13-bit linear PCM data.

7		0
	LOGIN	

25.12.6 Logarithmic PCM Data Output Register n (LOGOUTn)

The LOGOUTn registers are 8-bit, read-only registers. They hold logarithmic PCM data that has been converted from lin- ear PCM data. After reset, the LOGOUT registers are clear.

	7	0
ſ	LOGOUT	

25.12.7 Linear PCM Data Input Register n (LINEARINn)

The LINEARINn registers are 16-bit, write-only registers. The data is left-aligned. When converting to Alaw, bits 2:0 are ignored. When converting to µ-law, bits 1:0 are ignored.

15

LINEARIN

25.12.8 Linear PCM Data Output Register n (LINEAROUTn)

The LINEAROUTn registers are 16-bit, read-only registers. The data is left-aligned. When converting from A-law, bits 2:0 are clear. When converting from μ -law, bits 1:0 are clear. After reset, this register is clear.

15

LINEAROUT

0

0

TEXAS INSTRUMENTS

www.ti.com

25.12.9 CVSD Control Register n (CVCTRLn)

The CVCTRLn registers are 16-bit, read/write registers that control interrupts, DMA, and modes of operation. At reset, all implemented bits are cleared.

7	6	5	4	3	2	1	0
DMAPO	DMACI	DMACO	CVSDERRINT	CVSDINT	PCMINT	CLKEN	CVEN
15	14	13	12	11	10	9	8
R	Res.		LUTION	PCMCONV	CVSD	CONV	DMAPI
CVEN The Module Enable bit enables or disables the CVSD conversion module. When the bit is set, the interface is enabled which allows read and write operations to the rest of the module. When the bit is clear, the module is disabled and the CVSTAT register is initialized. 0 – CVSD module enabled. 1 – CVSD module disabled.							
CLKEN	The CVSD Clock Enable bit enables the 2- MHz clock to the CVSD module. 0 – CVSD module clock disabled. 1 – CVSD module clock enabled.						
PCMINT	The PCM Interru 0 – PCM interrup 1 – PCM interrup	t disabled.	trols generation of	the PCM register	interrupts.		
CVSDINT	The CVSD FIFO 0 – CVSD interru 1 – CVSD interru	pt disabled.	bit controls genera	tion of the CVSD	FIFO interrupts.		
CVSDERRINT	·						
DMACO	The DMA Enable for CVSD Out bit enables hardware DMA control for reading CVSD data from the CVSD Out FIFO. If clear, DMA sup- port is disabled. 0 – CVSD output DMA disabled. 1 – CVSD output DMA enabled.						
DMACI	The DMA Enable for CVSD In bit enables hardware DMA control for writing CVSD data into the CVSD In FIFO. If clear, DMA support is disabled. 0 – CVSD input DMA disabled. 1 – CVSD input DMA enabled.						
DMAPO	The DMA Enable clear, DMA supp 0 – PCM output I 1 – PCM output I	ort is disabled. DMA disabled.	enables hardware	DMA control for r	eading PCM data	from the PCMOU	T register. If
DMAPI	The DMA Enable for PCM In bit enables hardware DMA control for writing PCM data into the PCMIN register. If cleared, DMA support is disabled. 0 – PCM input DMA disabled. 1 – PCM input DMA enabled.						ster. If cleared,
CVSDCONV	The CVSD to PC 00 - CVSD <-> 8 01 - CVSD <-> 8 10 - CVSD <-> L 11 - Reserved.	-bit µ-Law PCM -bit A-Law PCM	ormat field selects t	he format for CVS	D/PCM conversio	ons.	
PCMCONV	The PCM to PCM 0 - Linear PCM < 1 - Linear PCM <	<-> 8-bit µ-Law P		format for PCM/P	CM conversions.		
RESOLUTION	right shifting and converted to eithe	sign extending ti er left-justified ze any change in av ation ation	specifies the attenu he data. This affect: ero-stuffed 13-bit (A erage levels resultin	s the log PCM dat -law) or 14-bit (μ-l	a as well as the li aw). The RESOL	near PCM data. T	he log data is

25.12.10 CVSD Status Register n (CVSTATn)

The CVSTATn registers are 16-bit, read-only registers that hold the status information of the CVSD/PCM modules. At reset or when the module is disabled (CVCTRLn.CVEN bit is cleared), the register is initialized to 8001h.

7	5	4	3	2	1	0
Reserved		CVF	CVE	PCMINT	CVNF	CVNE
15		12	11			8
	CVINST			CVO	UTST	
CVNE	The CVSD In FIFO Nearly Empt level. The FIFO threshold level is set, an interrupt will be asserted this bit is set. The CVNE bit is cl 0 – CVSD In FIFO is not nearly 1 – CVSD In FIFO is nearly emp	specified in the C when the CVNE bi ear when the FIFO empty.	VIN_THRES field t is set. If the DMA	of the CVTHRESH ACI bit is set, a DM	I register. If the C IA request will be	VSDINT bit is asserted when
CVNF	The CVSD Out FIFO Nearly Full threshold level. The FIFO thresh CVSDINT bit is set, an interrupt asserted when this bit is set. The 0 – CVSD Out FIFO is not nearly 1 – CVSD Out FIFO is nearly ful	old level is specifie will be asserted wh e CVNF bit is clear v full.	d in the CVOUT_1 en the CVNF bit is	THRES field of the s set. If the DMAC	CVTHRESH regi O bit is set, a DM	ster. If the A request will be
PCMINT	The PCM Interrupt bit set indicat empty and needs to be loaded w 0 – PCM does not require servic 1 – PCM requires loading or unlo	ith new PCM data. e.				
CVE	The CVSD In FIFO Empty bit inc was already empty. If the CVSD only cleared when software write 0 – CVSD In FIFO was not read 1 – CVSD In FIFO was read whi	ERRINT bit is set, a s a 1 to this bit. while empty.				
CVF	The CVSD Out FIFO Full bit set FIFO was already full. If the CVS only cleared when software write 0 – CVSD Out FIFO was not wri 1 – CVSD Out FIFO was written	DERRINT bit is se s a 1 to this bit. ten while full.				
CVINST	The CVSD In FIFO Status field in the FIFO is empty, the CVINST f					In FIFO. When
CVOUTST	CVSD Out FIFO Status field indi the FIFO is fuil, the CVOUTST fi					

25.12.11 CVSD FIFO Threshold Register n (CVTHRESHn)

The CVTHRESHn registers are 16-bit, read/write registers that specify threshold levels for FIFO interrupts and DMA requests and the CVNE and CVNF bits in the CVSTATn registers. At reset, the registers are initialized to 0504h.

7		4	3		0
Reserved				CVIN_THRESH	
15		12	11		8
Reserved CVOUT_THRESH				CVOUT_THRESH	
CVIN_THRESH	H The CVSD In FIFO Threshold field specifies the level that sets the CVNE bit. When the number of words in the FIFO is less than CVIN_THRESH, the CVNE bit is set.				
CVOUT_THRESH	CVOUT_THRESH The CVSD Out FIFO Threshold field specifies the level that sets the CVNF bit. When the number of words in the				

The CVSD Out FIFO Threshold field specifies the level that sets the CVNF bit. When the number of words in th FIFO is the same or more than CVOUT_THRESH, the CVNF bit is set.

26 QUAD UART

The CP3CN37 provides four Universal Asynchronous Receiver/ Transmitter (UART) modules. Each module supports a wide range of software-programmable baud rates (up to 3.072 Mbaud) and data formats. It handles automatic parity generation and several error detection schemes.

All UART modules offer the following features:

- Full-duplex double-buffered receiver/transmitter
- Asynchronous operation
- Programmable baud rate
- Programmable framing formats: 7, 8, or 9 data bits; even, odd, or no parity; one or two stop bits (mark or space)
- Hardware parity generation for data transmission and parity check for data reception
- Interrupt or DMA requests on transmit ready and receive ready conditions, separately enabled
- Software-controlled break transmission and detection
- Internal diagnostic capability
- Automatic detection of parity, framing, and overrun errors

The UART modules are referred to as UART0, UART1, UART2, and UART3.

UART0 and UART1 offer synchronous operation using the CKX external clock pin and hardware flow control using the CTS and RTS signals.

26.1 FUNCTIONAL OVERVIEW

Figure 26-1 is a block diagram of the UART module showing the basic functional units in the UART:

- Transmitter
- Receiver
- Baud Rate Generator
- Control and Error Detection

The Transmitter block consists of an 8-bit transmit shift register and an 8-bit transmit buffer. Data bytes are loaded in parallel from the buffer into the shift register and then shifted out serially on the TXD pin.

The Receiver block consists of an 8-bit receive shift register and an 8-bit receive buffer. Data is received serially on the RXD pin and shifted into the shift register. Once eight bits have been received, the contents of the shift register are transferred in parallel to the receive buffer.

The Transmitter and Receiver blocks both contain extensions for 9-bit data transfers, as required by the 9bit and loopback operating modes.

The Baud Rate Generator generates the clock for the synchronous and asynchronous operating modes. It consists of two registers and a two-stage counter. The registers are used to specify a prescaler value and a baud rate divisor. The first stage of the counter divides the UART clock based on the value of the programmed prescaler to create a slower clock. The second stage of the counter creates the baud rate clock by dividing the output of the first stage based on the programmed baud rate divisor.

The Control and Error Detection block contains the UART control registers, control logic, error detection circuit, parity generator/checker, and interrupt generation logic. The control registers and control logic determine the data format, mode of operation, clock source, and type of parity used. The error detection circuit generates parity bits and checks for parity, framing, and overrun errors.

The Flow Control Logic block provides the capability for hardware handshaking between the UART and a peripheral device. When the peripheral device needs to stop the flow of data from the UART, it deasserts the clear-to-send (CTS0) signal which causes the UART to pause after sending the current frame (if any). The UART asserts the ready-to- send (RTS0) signal to the peripheral when it is ready to send a character.

26.2 UART OPERATION

The UART has two basic modes of operation: synchronous and asynchronous. Synchronous mode is only supported for the UART0 and UART1 modules. In addition, there are two special-purpose modes, called attention and diagnostic. This section describes the UART operating modes.

26.2.1 Asynchronous Mode

The asynchronous mode of the UART enables the device to communicate with other devices using just two communication signals: transmit and receive.

In asynchronous mode, the transmit shift register (TSFT) and the transmit buffer (UnTBUF) double-buffer the data for transmission. To transmit a character, a data byte is loaded in the UnTBUF register. The data is then transferred to the TSFT register. While the TSFT register is shifting out the current character (LSB first) on the TXD pin, the UnTBUF register is loaded by software with the next byte to be transmitted. When TSFT finishes transmission of the last stop bit of the current frame, the contents of UnTBUF are transferred to the TSFT register and the Transmit Buffer Empty bit (UTBE) is set. The UTBE bit is automatically cleared by the UART when software loads a new character into the UnTBUF register. During transmission, the UXMIP bit is set high by the UART. This bit is reset only after the UART has sent the last stop bit of the current character and the UnTBUF register is empty. The UnTBUF register is a read/write register. The TSFT register is not software accessible.

In asynchronous mode, the input frequency to the UART is 16 times the baud rate. In other words, there are 16 clock cycles per bit time. In asynchronous mode, the baud rate generator is always the UART clock source.

The receive shift register (RSFT) and the receive buffer (Un- RBUF) double buffer the data being received. The UART receiver continuously monitors the signal on the RXD pin for a low level to detect the beginning of a start bit. On sensing this low level, the UART waits for seven input clock cycles and samples again three times. If all three samples still indicate a valid low, then the receiver considers this to be a valid start bit, and the remaining bits in the character frame are each sampled three times, around the mid-bit position. For any bit following the start bit, the logic value is found by majority voting, that is, the two samples with the same value define the value of the data bit. Figure 26-2 illustrates the process of start bit detection and bit sampling.

Data bits are sensed by taking a majority vote of three samples latched near the midpoint of each baud (bit time). Normally, the position of the samples within the baud is determined automatically, but software can override the automatic selection by setting the USMD bit in the UnMDSL2 register and programming the UnSPOS register.

Serial data input on the RXD pin is shifted into the RSFT register. On receiving the complete character, the contents of the RSFT register are copied into the UnRBUF register and the Receive Buffer Full bit (URBF) is set. The URBF bit is automatically cleared when software reads the character from the URBUF register. The RSFT register is not software accessible.

www.ti.com

INSTRUMENTS

Texas

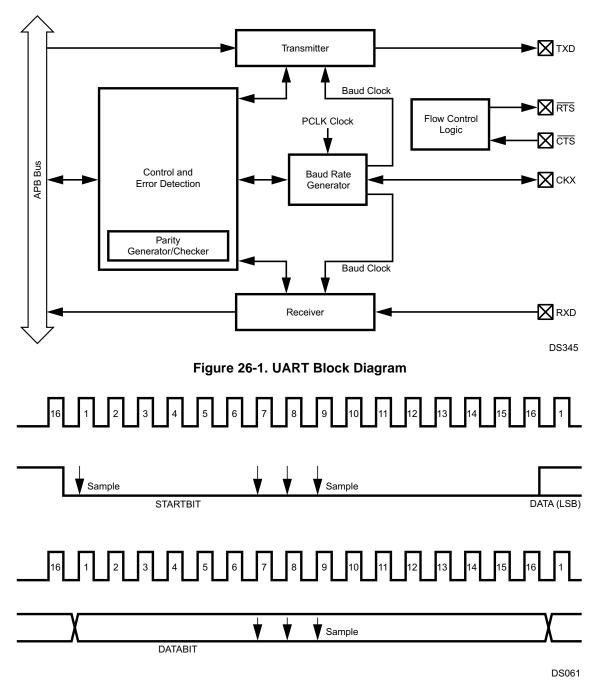


Figure 26-2. UART Asynchronous Communication

26.2.2 Synchronous Mode

Synchronous mode enables the device to communicate with other devices using three communication signals: transmit, receive, and clock. In this mode, data bits are transferred synchronously with the CKX clock signal. Data bits are transmitted on the rising edges and received on the falling edges of the clock signal, as shown in Figure 26-3. Data bytes are transmitted and received least significant bit (LSB) first.

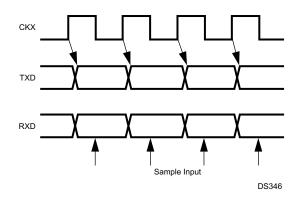


Figure 26-3. UART Synchronous Communication

In synchronous mode, the transmit shift register (TSFT) and the transmit buffer (UnTBUF) double-buffer the data for transmission. To transmit a character, a data byte is loaded in the UnTBUF register. The data is then transferred to the TSFT register. The TSFT register shifts out one bit of the current character, LSB first, on each rising edge of the clock. While the TSFT is shifting out the current character on the TXD pin, the UnTBUF register may be loaded by software with the next byte to be transmitted. When the TSFT finishes transmission of the last stop bit within the current frame, the contents of UnTBUF are transferred to the TSFT register and the Transmit Buffer Empty bit (UTBE) is set. The UTBE bit is automatically reset by the UART when software loads a new character into the UnTBUF register. During transmission, the UXMIP bit is set by the UART. This bit is cleared only after the UART has sent the last frame bit of the current character and the UnTBUF register is empty.

The receive shift register (RSFT) and the receive buffer (Un- RBUF) double-buffer the data being received. Serial data received on the RXD pin is shifted into the RSFT register on the first falling edge of the clock. Each subsequent falling edge of the clock causes an additional bit to be shifted into the RSFT register. The UART assumes a complete character has been received after the correct number of rising edges on CKX (based on the selected frame format) have been detected. On receiving a complete character, the contents of the RSFT register are copied into the UnRBUF register and the Receive Buffer Full bit (URBF) is set. The URBF bit is automatically cleared when software reads the character from the UnRBUF register.

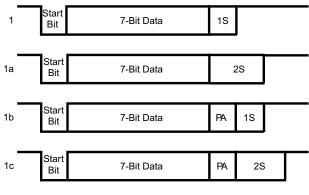
The transmitter and receiver may be clocked by either an external source provided to the CKX pin or the internal baud rate generator. In the latter case, the clock signal is placed on the CKX pin as an output.

www.ti.com

26.2.3 Attention Mode

The Attention mode is available for networking this device with other processors. This mode requires the 9-bit data format with no parity. The number of start bits and number of stop bits are programmable. In this mode, two types of 9-bit characters are sent on the network: address characters consisting of 8 address bits and a 1 in the ninth bit position and data characters consisting of 8 data bits and a 0 in the ninth bit position.

While in Attention mode, the UART receiver monitors the communication flow but ignores all characters until an address character is received. On receiving an address character, the contents of the receive shift register are copied to the receive buffer. The URBF bit is set and an interrupt (if enabled) is generated. The UATN bit is automatically cleared, and the UART begins receiving all subsequent characters. Software must examine the contents of the URBUF register and respond by accepting the subsequent characters (by leaving the UATN bit clear) or waiting for the next address character (by setting the UATN bit again).


The operation of the UART transmitter is not affected by the selection of this mode. The value of the ninth bit to be transmitted is programmed by setting or clearing the UXB9 bit in the UART Frame Select register. The value of the ninth bit received is read from URB9 in the UART Status Register.

26.2.4 Diagnostic Mode

The Diagnostic mode is available for testing of the UART. In this mode, the TXD and RXD pins are internally connected together, and data shifted out of the transmit shift register is immediately transferred to the receive shift register. This mode supports only the 9-bit data format with no parity. The number of start and stop bits is programmable.

26.2.5 Frame Format Selection

The format shown in Figure 26-4 consists of a start bit, seven data bits (excluding parity), and one or two stop bits. If parity bit generation is enabled by setting the UPEN bit, a parity bit is generated and transmitted following the seven data bits.

DS063


Figure 26-4. 7-Bit Data Frame Options

The format shown in Figure 26-5 consists of one start bit, eight data bits (excluding parity), and one or two stop bits. If parity bit generation is enabled by setting the UPEN bit, a parity bit is generated and transmitted following the eight data bits.

Figure 26-5. 8-Bit Data Frame Options

The format shown in Figure 26-6 consists of one start bit, nine data bits, and one or two stop bits. This format also supports the UART attention feature. When operating in this format, all eight bits of UnTBUF and UnRBUF are used for data. The ninth data bit is transmitted and received using two bits in the control registers, called UXB9 and URB9. Parity is not generated or verified in this mode.

DS065

26.2.6 Baud Rate Generator

The Baud Rate Generator creates the basic baud clock from the PCLK Clock. The PCLK Clock is passed through a two-stage divider chain consisting of a 5-bit baud rate prescaler (UnPSC) and an 11-bit baud rate divisor (UnDIV).

The relationship between the 5-bit prescaler select (UnPSC) setting and the prescaler factors is shown in Table 26-1.

Prescaler Select	Prescaler Factor	
00000	No clock	
00001	1	
00010	1.5	
00011	2	
00100	2.5	
00101	3	
00110	3.5	
00111	4	
01000	4.5	
01001	5	

www.ti.com

STRUMENTS

EXAS

	6-1. Prescaler Factors (continued)	
01010	5.5	
01011	6	
01100	6.5	
01101	7	
01110	7.5	
01111	8	
10000	8.5	
10001	9	
10010	9.5	
10011	10	
10100	10.5	
10101	11	
10110	11.5	
10111	12	
11000	12.5	
11001	13	
11010	13.5	
11011	14	
11100	14.5	
11101	15	
11110	15.5	
11111	16	

A prescaler factor of zero corresponds to "no clock." The "no clock" condition is the UART power down mode, in which the UART clock is turned off to reduce power consumption. Software must select the "no clock" condition before enter- ing a new baud rate. Otherwise, it could cause incorrect data to be received or transmitted. The UnPSR register must contain a value other than zero when an external clock is used at CKX.

Table 26-1 Prescaler Factors (continued)

26.2.7 Interrupts

www.ti.com

The UART modules are capable of generating interrupts on:

- Receive Buffer Full
- Receive Error
- Transmit Buffer Empty
- Clear To Send

Figure 26-7 shows a diagram of the interrupt sources and associated enable bits.

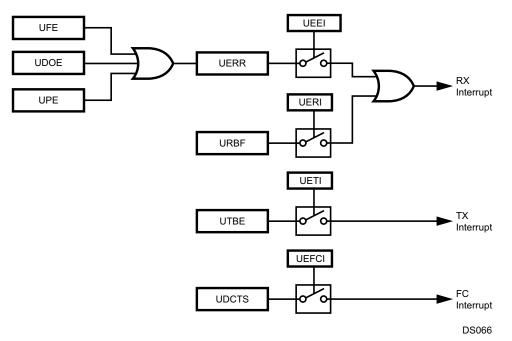


Figure 26-7. UART Interrupts

The interrupts can be individually enabled or disabled using the Enable Transmit Interrupt (UETI), Enable Receive Interrupt (UERI), and Enable Receive Error Interrupt (UEER) bits in the UnICTRL register.

A transmit interrupt is asserted when both the UTBE and UETI bits are set. To remove this interrupt, software must either disable the interrupt by clearing the UETI bit or write to the UnTBUF register (which clears the UTBE bit).

A receive interrupt is asserted on these conditions:

- Both the URBF and UERI bits are set. To remove this interrupt, software must either disable the interrupt by clearing the UERI bit or read from the URBUF register (which clears the URBF bit).
- Both the UERR and the UEEI bits are set. To remove this interrupt, software must either disable the interrupt by clearing the UEEI bit or read the UnSTAT register (which clears the UERR bit).

A flow control interrupt is asserted when both the UDCTS and the UEFCI bits are set. To remove this interrupt, software must either disable the interrupt by clearing the UEFCI bit or reading the UnICTRL register (which clears the UDCTS bit).

www.ti.com

26.2.8 DMA Support

Any UART module can operate with one or two DMA channels. For processor-independent full-duplex operation, two DMA channels must be used. Both receive and transmit DMA can be enabled simultaneously.

If transmit DMA is enabled (the UETD bit is set), the UART generates a DMA request when the UTBE bit changes state from clear to set. Enabling transmit DMA automatically disables transmit interrupts, without regard to the state of the UETI bit.

If receive DMA is enabled (the UERD bit is set), the UART generates a DMA request when the URBF bit changes state from clear to set. Enabling receive DMA automatically disables receive interrupts, without regard to the state of the UERI bit. However, receive error interrupts should be enabled (the UEEI bit is set) to allow detection of receive errors when DMA is used.

26.2.9 Break Generation and Detection

A line break is generated when the UBRK bit is set in the UnMDSL1 register. The TXD line remains low until the program resets the UBRK bit.

A line break is detected if RXD remains low for 10 bit times or longer after a missing stop bit is detected.

26.2.10 Parity Generation and Detection

Parity is only generated or checked with the 7-bit and 8-bit data formats. It is not generated or checked in the diagnostic loopback mode, the attention mode, or in normal mode with the 9-bit data format. Parity generation and checking are enabled and disabled using the PEN bit in the UnFRS register. The UPSEL bits in the UnFRS register are used to select odd, even, or no parity.

26.3 UART REGISTERS

Software interacts with the UART modules by accessing the UART registers, as listed in Table 26-2.

Name	Address	Description
U0ICTRL	FF 9408h	UART0 Interrupt Control Register
UOSTAT	FF 940Ch	UART0 Status Register
U0MDSL1	FF 9414h	UART0 Mode Select Register 1
U0MDSL2	FF 9424h	UART0 Mode Select Register 2
U0PSR	FF 941Ch	UART0 Baud Rate Prescaler
U0BAUD	FF 9418h	UART0 Baud Rate Divisor
U0FRS	FF 9410h	UART0 Frame Select Register
U0SPOS	FF 9428h	UART0 Sample Position Register
U00VR	FF 9420h	UART0 Oversample Rate Register
UORBUF	FF 9404h	UART0 Receive Data Buffer
UOTBUF	FF 9400h	UART0 Transmit Data Buffer
U1ICTRL	FF 9808h	UART1 Interrupt Control Register
U1STAT	FF 980Ch	UART1 Status Register
U1MDSL1	FF 9814h	UART1 Mode Select Register 1
U1MDSL2	FF 9824h	UART1 Mode Select Register 2
U1PSR	FF 981Ch	UART1 Baud Rate Prescaler
U1BAUD	FF 9818h	UART1 Baud Rate Divisor
U1FRS	FF 9810h	UART1 Frame Select Register
U1SPOS	FF 9828h	UART1 Sample Position Register
U10VR	FF 9820h	UART1 Oversample Rate Register
U1RBUF	FF 9804h	UART1 Receive Data Buffer

Table 26-2. UART Registers

Copyright © 2007–2013, Texas Instruments Incorporated

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

Table 20-2. OANT Registers (continued)							
FF 9800h	UART1 Transmit Data Buffer						
FF 9C08h	UART2 Interrupt Control Register						
FF 9C0Ch	UART2 Status Register						
FF 9C14h	UART2 Mode Select Register 1						
FF 9C24h	UART2 Mode Select Register 2						
FF 9C1Ch	UART2 Baud Rate Prescaler						
FF 9C18h	UART2 Baud Rate Divisor						
FF 9C10h	UART2 Frame Select Register						
FF 9C28h	UART2 Sample Position Register						
FF 9C20h	UART2 Oversample Rate Register						
FF 9C04h	UART2 Receive Data Buffer						
FF 9C00h	UART2 Transmit Data Buffer						
FF 5C08h	UART3 Interrupt Control Register						
FF 5C0Ch	UART3 Status Register						
FF 5C14h	UART3 Mode Select Register 1						
FF 5C24h	UART3 Mode Select Register 2						
FF 5C1Ch	UART3 Baud Rate Prescaler						
FF 5C18h	UART3 Baud Rate Divisor						
FF 5C10h	UART3 Frame Select Register						
FF 5C28h	UART3 Sample Position Register						
FF 5C20h	UART3 Oversample Rate Register						
FF 5C04h	UART3 Receive Data Buffer						
FF 5C00h	UART3 Transmit Data Buffer						
	FF 9800h FF 9C08h FF 9C02h FF 9C14h FF 9C14h FF 9C14h FF 9C14h FF 9C16h FF 9C10h FF 9C10h FF 9C28h FF 9C20h FF 9C20h FF 9C00h FF 9C00h FF 5C08h FF 5C02h FF 5C02h FF 5C14h FF 5C12h FF 5C18h FF 5C10h FF 5C28h FF 5C20h FF 5C04h						

Table 26-2. UART Registers (continued)

26.3.1 UART Interrupt Control Register (UnICTRL)

The UnICTRL registers are 8-bit, read/write registers that contain the receive and transmit interrupt status bits (read- only bits) and the interrupt enable bits (read/write bits). The register is initialized to 01h at reset.

7	6	5	4	3	2	1	0
UEEI	UERI	UETI	UEFCI	UCTS	UDCTS	URBF	UTBE
UTBE	The Transmit Buffer Empty bit is set by hard- ware when the UART transfers data from the UnTBUF register to the transmit shift register for transmission. It is automatically cleared by the hardware on the next write to the UnTBU register. 0 – Transmit buffer is loaded. 1 – Transmit buffer is empty.						
URBF	The Receive Buffer Full bit is set by hardware when the UART has received a complete data frame and has tra the data from the receive shift register to the UnRBUF register. It is automatically cleared by the hardware whe UnRBUF register is read. 0 – Receive buffer is empty.						

1 - Receive buffer is loaded.

CP3CN37

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com

NSTRUMENTS

EXAS

UDCTS	The Delta Clear To Send bit indicates whether the CTS input has changed state since the CPU last read this register. This bit is only used with UART0 and UART1. 0 – No change since last read. 1 – State has changed since last read.
UCTS	The Clear To Send bit indicates the state on the CTS input. This bit is only used with UART0 and UART1. 0 – CTS input is high. 1 – CTS input is low.
UEFCI	The Enable Flow Control Interrupt bit controls whether a flow control interrupt is asserted when the UDCTS bit changes from clear to set. This bit is only used with UART0 and UART1. 0 – Flow control interrupt disabled. 1 – Flow control interrupt enabled
UETI	The Enable Transmitter Interrupt bit, when set, enables generation of an interrupt when the hardware sets the UTBE bit. 0 – Transmit buffer empty interrupt disabled. 1 – Transmit buffer empty interrupt enabled.
UERI	The Enable Receiver Interrupt bit, when set, enables generation of an interrupt when the hardware sets the URBF bit. 0 – Receive buffer full interrupt disabled. 1 – Receive buffer full interrupt enabled.
UEEI	The Enable Receive Error Interrupt bit, when set, enables generation of an interrupt when the hardware sets the UERR bi in the Un- STAT register. 0 – Receive error interrupt disabled. 1 – Receive error interrupt enabled.

26.3.2 UART Status Register (UnSTAT)

The UnSTAT registers are 8-bit, read-only registers that contain the receive and transmit status bits. These registers are cleared at reset. Any attempt by software to write to these registers is ignored. The register format is shown below.

7	6	5	4	3	2	1	0
Res.	UXMIP	URB9	UBKD	UERR	UDOE	UFE	UPE
UPE		ard- ware when the or occurred.			a received charact	ter. This bit is auto	omatically
UFE	The Framing Error bit indicates whether the UART fails to receive a valid stop bit at the end of a frame. This bit is automatically cleared by the hardware when the UnSTAT register is read. 0 – No framing error occurred. 1 – Framing error occurred.						his bit is
UDOE	software has rea when the UnSTA 0 – No receive o		aracter from the l red.		nd transferred to th This bit is automat		
UERR	The Error Status bit indicates when a parity, framing, or overrun error occurs (any time that the UPE, UFE, or UDOE b set). It is automatically cleared by the hardware when the UPE, UFE, and UDOE bits are all 0. 0 – No receive error occurred. 1 – Receive error occurred.					E, or UDOE bit is	
UBKD	The Break Detect bit indicates when a line break condition occurs. This condition is de-tected if RXDn remains low least ten bit times after a missing stop bit has been detect- ed at the end of a frame. The hardware auto-matically of the UBKD bit on reading the UNSTAT register, but only if the break condi- tion on RXDn no longer exists. If reading UNSTAT register does not clear the UBKD bit because the break is still actively driven on the line, the hardware cle bit as soon as the break condition no longer exists (when the RXDn input returns to a high level). 0 – No break condition occurred. 1 – Break condition occurred.					matically clears If reading the	
URB9	The Received 9t	h Data Bit holds th	e ninth data bit,	when the UART is	configured to ope	rate in the 9-bit da	ata format.
UXMIP		and clears the bit transmitting.			. The hardware se	ts this bit when th	e UART is

26.3.3 UART Mode Select Register 1 (UnMDSL1)

The UnMDSL1 registers are 8-bit, read/write registers that select the clock source, synchronization mode, attention mode, and line break generation. These registers are cleared at reset. The register format is shown below.

7	6	5	4	3	2	1	0
URTS	UFCE	UERD	UETD	UCKS	UBRK	UATN	UMOD
UMOD	The Mode bit se and UART1 moo 0 – Asynchronou 1 – Synchronous	lules. Is mode.	chronous and asy	nchronous mode.	Synchronous mod	de is only availab	le for the UART0
UATN	The Attention Mode bit is used to enable Attention mode. When set, this bit selects the attention mode of operation for UART. When clear, the attention mode is disabled. The hardware clears this bit after an address frame is received. A address frame is a 9-bit character with a 1 in the ninth bit position. 0 – Attention mode disabled. 1 – Attention mode enabled.						
UBRK		v until the UBRK b ation.		he TXD output low oftware.	 Setting this bit to 	○ 1 causes the TX	D pin to go low.
UCKS	The Synchronous Clock Source bit controls the clock source when the UART operates in the synchronous mode (UI = 1). This functionality is only available for the UART0 module. If the UCKS bit is set, the UART operates from an exclock provided on the CKX pin. If the UCKS bit is clear, the UART operates from the baud rate clock produced by th UART on the CKX pin. This bit is ignored when the UART operates in the asynchronous mode. 0 – Internal baud rate clock is used. 1 – External clock is used.					from an external	
UETD	The Enable Transmit DMA bit controls whether DMA is used for UART transmit operations. Enabling transmit DMA automatically disables transmit interrupts, without regard to the state of the UETI bit. 0 – Transmit DMA disabled. 1 – Transmit DMA enabled.					smit DMA	
UERD		ables receive inte e UERD bit. A disabled.		t is used for UART gard to the state o			
UFCE	UART0 and UAF 0 – Flow control		d.	ontrol interrupts a	re enabled. This fu	inctionality is only	v available for the
URTS	The Ready To S UAR <u>T1</u> modules 0 – <u>RTS</u> output i 1 – RTS output i	s high.	ntrols the state of	the \overline{RTS} output. T	This functionality is	only available fo	r the UART0 and

26.3.4 UART Mode Select Register 2 (UnMDSL2)

The UnMDSL2 registers are 8-bit, read/write registers that control the sample mode used to recover asynchronous data. At reset, the UnMDSL2 registers are cleared. The register format is shown below.

7		1	0
	Reserved		USMD
USMD	The USMD bit controls the sample mode for asynchronous transmission. 0 – UART determines the sample position automatically. 1 – The UnSPOS register determines the sample position.		

26.3.5 UART Baud Rate Prescaler (UnPSR)

The UnPSR registers are 8-bit, read/write registers that contains the 5-bit clock prescaler and the upper three bits of the baud rate divisor. These registers are cleared at reset. The register format is shown below.

7	3	2	0
	UPSC	l	JDIV10:8
UPSC	The Prescaler field specifies the prescaler value used for dividin divider chain. For the prescaler factors corresponding to each 5		stage of the two-stage
UDIV10:8	The Baud Rate Divisor field holds the three most significant bits the second stage of the two-stage divider chain. The remaining register.		

26.3.6 UART Baud Rate Divisor (UnBAUD)

The UnBAUD registers are 8-bit, read/write registers that contain the lower eight bits of the baud rate divisor. The register contents are unknown at power-up and are left unchanged by a reset operation. The register format is shown below.

7	0
	UDIV7:0
UDIV7:0	The Baud Rate Divisor field holds the eight lowest-order bits of the UART baud rate divisor used in the second stage of the two-stage divider chain. The three most significant bits are held in the UnPSR register. The divisor value used is

(UDIV[10:0] + 1).

26.3.7 UART Frame Select Register (UnFRS)

The UnFRS registers are 8-bit, read/write registers that control the frame format, including the number of data bits, number of stop bits, and parity type. These registers are cleared at reset. The register format is shown below.

7	6	5	4	3	2	1	0			
Reserved	UPEN UPSEL UXB9 USTP UCHAR									
UCHAR	per frame. 01 – 7 data bits p 10 – 9 data bits p	per frame.		per of data bits per	frame, not includir	ng the parity bit. C	0 – 8 data bits			
USTP	The Stop Bits bit 0 – One stop bit 1 – Two stop bits	per frame.	nber of stop bits t	ransmitted in each	frame.					
UXB9				nth data bit, either 0 hen the UART is co						
UPSEL	frame, the parity 00 – Odd parity. 01 – Even parity. 10 – No parity, tr	bit is omitted and		parity bit. When the is ignored.	UART is configur	ed to transmit nin	e data bits per			
UPEN	nine data bits pe 0 – Parity genera		o parity bit and th disabled.	neration and parity ne Un- PEN bit is ig		ne UART is config	ured to transmit			

www.ti.com

26.3.8 UART Sample Position Register (UnSPOS)

The UnSPOS registers are 8-bit, read/write registers that specify the sample position when the USMD bit in the UnMDSL2 register is set. At reset, the UnSPOS registers are initialized to 06h. The register format is shown below.

7			4	3		0
	Reserve	ed			USAMP	
USAMP	value of data bits. T	he clocks ar (oversampli	e numbered starting ng rate - 3). The tab	at 0 and may rang le below shows th	ich to take the first of three samples ge up to 15 for 16× oversampling. T e clock period at which each of the	The maximum
	Oversampling		Sample Position			
	Rate	1	2	3		
	7	2	3	4		
	8	2	3	4		
	9	3	4	5		
	10	3	4	5		
	11	4	5	6		
	12	4	5	6		
	13	5	6	7		
	14	5	6	7		
	15	6	7	8		
	16	6	7	8		
	The USAMP field m					

to choose any other clock period at which to start taking the three samples.

26.3.9 UART Oversample Rate Register (UnOVR)

The UnOVR registers are 8-bit, read/write registers that specify the oversample rate. At reset, the UnOVR registers are cleared. The register format is shown below.

7			4	3		0
	Res	served			UOVSR	
UOVSR	The Oversample	ing Rate field specifie	s the oversamp	ling rate, as given ir	the following table.	
	UOVSR3:0	Oversampling Rate				
	0000-0110	16				
	0111	7				
	1000	8				
	1001	9				
	1010	10				
	1011	11				
	1100	12				
	1101	13				
	1110	14				
	1111	15				

26.3.10 UART Receive Data Buffer (UnRBUF)

The UnRBUF registers are 8-bit, read-only registers used to receive each data byte.

7		0
	URBUF	

26.3.11 UART Transmit Data Buffer (UnTBUF)

The UnTBUF registers are 8-bit, read/write registers used to transmit each data byte.

7		0
	UnTBUF	

26.4 BAUD RATE CALCULATIONS

The UART baud rate is determined by the PCLK Clock frequency and the values in the UnOVR, UnPSR, and Un- BAUD registers. Unless the PCLK Clock is an exact multiple of the baud rate, there will be a small amount of error in the resulting baud rate.

26.4.1 Asynchronous Mode

The equation to calculate the baud rate in asynchronous mode is:

$$BR = CLK / (O \times N \times P)$$

where

- BR is the baud rate •
- CLK is the PCLK Clock,
- O is the oversample rate
- N is the baud rate divisor + 1 and
- P is the prescaler divisor selected by the UPSR register.

Assuming an PCLK Clock of 5 MHz, a desired baud rate of 9600, and an oversample rate of 16, the N x P term according to the equation above is:

$$N \times P = (5 \times 10^6) / (16 \times 9600) = 32.552$$

The N × P term is then divided by each Prescaler Factor from Table 26-1 to obtain a value closest to an integer. The factor for this example is 6.5.

N = 32.552 / 6.5 = 5.008 (N = 5)	(24)
The baud rate register is programmed with a bau	id rate divisor of 4 (N - baud rate divisor \pm 1). This

The baud rate register is programmed with a baud rate divisor of 4 (N = baud rate divisor + 1). This produces a baud clock of:

$BR = (5 \times 10^6) / (16 \times 5 \times 6.5) = 9615.385$	(25)
%error = (9615.385 - 9600) / 9600 = 0.16	(26)

Note that the percent error is much lower than would be possible without the non-integer prescaler factor. Error greater than 3% is marginal and may result in unreliable operation. See Table 26-3 through Table 26-5 for recommended baud rate programming values.

ISTRUMENTS

(23)

(22)

26.4.2 Synchronous Mode

Synchronous mode is only available for the UART0 and UART1 modules. When synchronous mode is selected and the UCKS bit is set, the UART operates from a clock received on the CKX pin. When the UCKS bit is clear, the UART uses the clock from the internal baud rate generator which is also driven on the CKX pin. When the internal baud rate generator is used, the equation for calculating the baud rate is:

$\mathsf{BR} = \mathsf{CLK} / (2 \times \mathsf{N} \times \mathsf{P})$

(27)

where BR is the baud rate, CLK is the PCLK Clock, N is the value of the baud rate divisor + 1, and P is the prescaler divide factor selected by the value in the UnPSR register. Oversampling is not used in synchronous mode.

Use the same procedure to determine the values of N and P as in the asynchronous mode. In this case, however, only integer prescaler values are allowed.

Baud		PCLK =	48 MHz	z		PCLK = 45 MHz			PCLK = 30 MHz			PCLK = 24 MHz				
Rate	0	Ν	Р	%err	0	Ν	Р	%err	0	Ν	Р	%err	0	Ν	Р	%err
300	16	2000	5.0	0.00	16	1875	5	0	16	6250	1	0	16	2000	2.5	0
600	16	2000	2.5	0.00	16	1875	2.5	0	16	3125	1	0	16	1250	2.0	0
1200	16	1250	2.0	0.00	8	3125	1.5	0	8	3125	1	0	16	1250	1.0	0
1800	7	401	9.5	0.00	8	3125	1	0	13	1282	1	0	8	1111	1.5	0.01
2000	16	1500	1.0	0.00	8	1875	1.5	0	8	1875	1	0	16	750	1.0	0
2400	16	1250	1.0	0.00	10	1875	1	0	10	1250	1	0	16	625	1.0	0
3600	8	1111	1.5	0.01	8	625	2.5	0	13	641	1	0	12	101	5.5	0.01
4800	16	625	1.0	0.00	10	625	1.5	0	10	625	1	0	16	125	2.5	0
7200	12	101	5.5	0.01	10	625	1	0	9	463	1	0.01	11	303	1.0	0.01
9600	16	125	2.5	0.00	15	125	2.5	0	10	125	2.5	0	10	250	1.0	0
14400	11	202	1.5	0.01	10	125	2.5	0	7	35	8.5	0.04	11	101	1.5	0.01
19200	10	250	1.0	0.00	8	293	1	0.01	11	142	1	0.03	10	125	1.0	0
38400	10	125	1.0	0.00	11	71	1.5	0.03	11	71	1	0.03	10	25	2.5	0
56000	7	49	2.5	0.04	12	67	1	0.05	9	7	8.5	0.04	13	33	1.0	0.1
57600	14	7	8.5	0.04	11	71	1	0.03	16	5	6.5	0.16	7	7	8.5	0.04
115200	7	17	3.5	0.04	10	3	13	0.16	8	5	6.5	0.16	13	16	1.0	0.16
128000	15	25	1.0	0.00	8	4	11	0.12	9	2	13	0.16	15	5	2.5	0
230400	13	16	1.0	0.16	13	15	1	0.16	10	1	13	0.16	13	8	1.0	0.16
345600	9	1	15.5	0.44	13	10	1	0.16	7	1	12.5	0.79	10	7	1.0	0.79
460800	13	8	1.0	0.16	13	1	7.5	0.16	10	1	6.5	0.16	13	4	1.0	0.16
576000	8	7	1.5	0.79	13	6	1	0.16	8	1	6.5	0.16	12	1	3.5	0.79
691200	10	7	1.0	0.79	13	5	1	0.16	8	1	5.5	1.36	10	1	3.5	0.79
806400	7	1	8.5	0.04	8	7	1	0.35	15	1	2.5	0.79	15	2	1.0	0.79
921600	13	4	1.0	0.16	7	7	1	0.35	13	1	2.5	0.16	13	2	1.0	0.16
1105920	11	4	1.0	1.36	9	3	1.5	0.47	9	1	3	0.47	11	2	1.0	1.36
1382400	10	1	3.5	0.79	13	1	2.5	0.16	11	1	2	1.36	7	1	2.5	0.79
1536000	9	1	3.5	0.79	15	2	1	2.34	13	1	1.5	0.16	8	2	1.0	2.34
1843200	13	2	1	0.16	7	1	3.5	0.35	11	1	1.5	1.36				
2211840	11	2	1	1.36	10	2	1	1.73	9	1	1.5	0.47				
2764800	7	1	2.5	0.79	8	2	1	1.73								
3072000	8	1	2	2.34	10	1	1.5	2.34								

Table 26-3. Baud Rate Programming

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

TEXAS INSTRUMENTS

www.ti.com

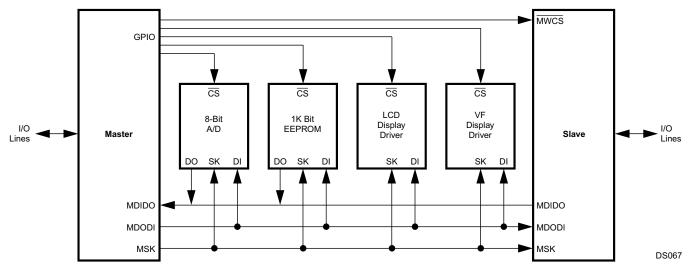
Baud		PCLK =	12 MH	z		PCLK =	10 MHz	Z		PCLK =	= 8 MHz			PCLK =	= 6 MHz	
Rate	0	Ν	Р	%err	ο	Ν	Р	%err	0	Ν	Р	%err	0	Ν	р	%err
300	16	1250	2	0	13	1282	2	0	7	401	9.5	0	16	1250	1	0
600	16	1250	1	0	13	1282	1	0	12	1111	1	0.01	16	625	1	0
1200	16	625	1	0	13	641	1	0	12	101	5.5	0.01	16	125	2.5	0
1800	12	101	5.5	0.01	12	463	1	0.01	8	101	5.5	0.01	11	303	1	0.01
2000	16	250	1.5	0	16	125	2.5	0	16	250	1	0	16	125	1.5	0
2400	16	125	2.5	0	9	463	1	0.01	11	303	1	0.01	10	250	1	0
3600	11	202	1.5	0.01	11	101	2.5	0.01	11	202	1	0.01	11	101	1.5	0.01
4800	10	250	1	0	7	119	2.5	0.04	11	101	1.5	0.01	10	125	1	0
7200	11	101	1.5	0.01	10	139	1	0.08	11	101	1	0.01	14	17	3.5	0.04
9600	10	125	1	0	7	149	1	0.13	14	17	3.5	0.04	10	25	2.5	0
14400	14	17	3.5	0.04	14	33	1.5	0.21	15	37	1	0.1	7	17	3.5	0.04
19200	10	25	2.5	0	16	13	2.5	0.16	7	17	3.5	0.04	16	13	1.5	0.16
38400	16	13	1.5	0.16	8	13	2.5	0.16	16	13	1	0.16	8	13	1.5	0.16
56000	13	11	1.5	0.1	7	17	1.5	0.04	13	11	1	0.1	9	12	1	0.79
57600	8	2	13	0.16	12	1	14.5	0.22	9	1	15.5	0.44	8	1	13	0.16
115200	13	8	1	0.16	7	5	2.5	0.79	10	7	1	0.79	13	4	1	0.16
128000	11	1	8.5	0.27	12	1	6.5	0.16	9	7	1	0.79	16	3	1	2.34
230400	13	4	1	0.16	11	4	1	1.36	10	1	3.5	0.79	13	2	1	0.16
345600	10	1	3.5	0.79					15	1	1.5	2.88	7	1	2.5	0.79
460800	13	2	1	0.16	11	2	1	1.36	7	1	2.5	0.79	13	1	1	0.16
576000	14	1	1.5	0.79	7	1	2.5	0.79	7	2	1	0.79	7	1	1.5	0.79
691200	7	1	2.5	0.79												
806400	10	1	1.5	0.79												
921600	13	1	1	0.16												
1105920					9	1	1	0.47								

Table 26-4. Baud Rate Programming

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

	Baud PCLK = 5 MHz PCLK = 4 MHz							PCLK = 3 MHz PCLK = 2 MHz								
Baud Rate					-					1					1	
	0	N	Р	%err	0	N	Р	%err	0	N	Р	%err	0	N	Р	%err
300	11	202	7.5	0.01	12	202	5.5	0.01	16	250	2.5	0	12	101	5.5	0.01
600	11	101	7.5	0.01	12	101	5.5	0.01	16	125	2.5	0	11	202	1.5	0.01
1200	10	119	3.5	0.04	11	202	1.5	0.01	10	250	1	0	11	101	1.5	0.01
1800	11	101	2.5	0.01	11	202	1	0.01	11	101	1.5	0.01	11	101	1	0.01
2000	10	250	1.0	0.00	16	125	1	0	15	100	1	0	16	25	2.5	0
2400	7	119	2.5	0.04	11	101	1.5	0.01	10	125	1	0	14	17	3.5	0.04
3600	10	139	1.0	0.08	11	101	1	0.01	14	17	3.5	0.04	15	37	1	0.1
4800	7	149	1.0	0.13	14	17	3.5	0.04	10	25	2.5	0	7	17	3.5	0.04
7200	14	33	1.5	0.21	15	37	1	0.1	7	17	3.5	0.04	9	31	1	0.44
9600	16	13	2.5	0.16	7	17	3.5	0.04	16	13	1.5	0.16	16	13	1	0.16
14400	7	33	1.5	0.21	9	31	1	0.44	13	16	1	0.16	9	1	15.5	0.44
19200	8	13	2.5	0.16	16	13	1	0.16	8	13	1.5	0.16	16	1	6.5	0.16
38400	13	10	1.0	0.16	16	1	6.5	0.16	13	6	1	0.16	8	1	6.5	0.16
56000	15	6	1.0	0.79	13	1	5.5	0.1	9	6	1	0.79	9	4	1	0.79
57600	7	1	12.5	0.79	7	1	10	0.79	8	1	6.5	0.16	7	1	5	0.79
115200	11	4	1.0	1.36	10	1	3.5	0.79	13	2	1	0.16	7	1	2.5	0.79
128000	13	3	1.0	0.16	9	1	3.5	0.79	16	1	1.5	2.34	8	2	1	2.34
230400	11	2	1.0	1.36	7	1	2.5	0.79	13	1	1	0.16				
Baud		PCLK =	= 1 MHz			PCLK =	500 KH	z								
Rate	0	Ν	Р	%err	0	Ν	Р	%err								
300	11	202	1.5	0.01	11	101	1.5	0.01								
600	11	101	1.5	0.01	14	17	3.5	0.04								
1200	14	17	3.5	0.04	7	17	3.5	0.04								
1800	15	37	1.0	0.10	9	31	1.0	0.44								
2000	10	50	1.0	0.00	10	25	1.0	0.00								
2400	7	17	3.5	0.04	16	13	1.0	0.16								
3600	9	31	1.0	0.44	9	1	15.5	0.44								
4800	16	13	1.0	0.16	16	1	6.5	0.16								
7200	9	1	15.5	0.44	10	7	1.0	0.79								
9600	16	1	6.5	0.16	8	1	6.5	0.16								
14400	10	7	1.0	0.79	10	1	3.5	0.79								
19200	8	1	6.5	0.16	13	2	1.0	0.16								
38400	13	2	1.0	0.16	13	1	1.0	0.16								
56000	9	2	1.0	0.79												
				1		1	1									

Table 26-5. Baud Rate Programming


27 MICROWIRE/SPI INTERFACE

Microwire/Plus is a synchronous serial communications protocol, originally implemented in Texas Instruments' COP8[®] and HPC families of microcontrollers to minimize the number of connections, and therefore the cost, of communicating with peripherals.

The CP3CN37 has an enhanced Microwire/SPI interface module (MWSPI) that can communicate with all peripherals that conform to Microwire or Serial Peripheral Interface (SPI) specifications. This enhanced Microwire interface is capable of operating as either a master or slave and in 8- or 16-bit mode. Figure 27-1 shows a typical enhanced Microwire interface application.

The enhanced Microwire interface module includes the following features:

- Programmable operation as a Master or Slave
- Programmable shift-clock frequency (master only)
- Programmable 8- or 16-bit mode of operation
- 8- or 16-bit serial I/O data shift register
- Two modes of clocking data
- Serial clock can be low or high when idle
- 16-bit read buffer
- Busy bit, Read Buffer Full bit, and Overrun bit for polling and as interrupt sources
- Supports multiple masters
- Maximum bus clock frequency of 12 MHz running from a 48 MHz PCLK Clock
- Supports very low-end slaves with the Slave Ready output
- Echo back enable/disable (Slave only)

27.1 MICROWIRE OPERATION

The Microwire interface allows several devices to be connected on one three-wire system. At any given time, one of these devices operates as the master while all other devices operate as slaves. The Microwire interface allows the device to operate either as a master or slave transferring 8- or 16- bits of data.

The master device supplies the synchronous clock (MSK) for the serial interface and initiates the data transfer. The slave devices respond by sending (or receiving) the requested data. Each slave device uses the master's clock for serially shifting data out (or in), while the master shifts the data in (or out).

The three-wire system includes: the serial data in signal (MDIDO for master mode, MDODI for slave mode), the serial data out signal (MDODI for master mode, MDIDO for slave mode), and the serial clock (MSK).

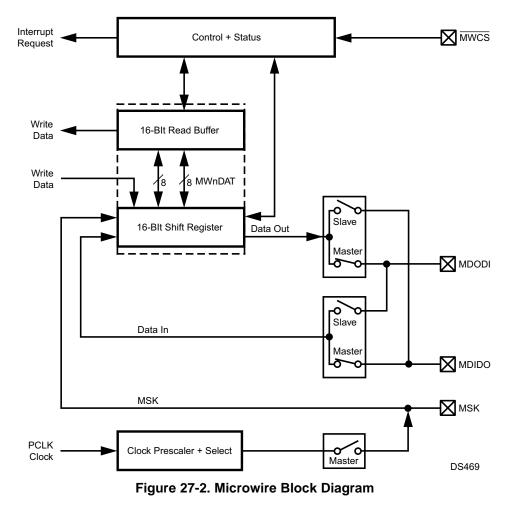

In slave mode, an optional fourth signal (MWCS) may be used to enable the slave transmit. At any given time, only one slave can respond to the master. Each slave device has its own chip select signal (MWCS) for this purpose.

Figure 27-2 shows a block diagram of the enhanced Microwire serial interface in the device.

27.1.1 Shifting

The Microwire interface is a full duplex transmitter/receiver. A 16-bit shifter, which can be split into a low and high byte, is used for both transmitting and receiving. In 8-bit mode, only the lower 8-bits are used to transfer data. The transmitted data is shifted out through MDODI pin (master mode) or MDIDO pin (slave mode), starting with the most significant bit. At the same time, the received data is shifted in through MDIDO pin (master mode) or MDODI pin (slave mode), also starting with the most significant bit first.

The shift in and shift out are controlled by the MSK clock. In each clock cycle of MSK, one bit of data is transmitted/received. The 16-bit shifter is accessible as the MWDAT register. Reading the MWDAT register returns the value in the read buffer. Writing to the MWDAT register updates the 16- bit shifter.

27.1.2 Reading

The enhanced Microwire interface implements a double buffer on read. As illustrated in Figure 27-2, the double read buffer consists of the 16-bit shifter and a buffer, called the read buffer.

The 16-bit shifter loads the read buffer with new data when the data transfer sequence is completed and previous data in the read buffer has been read. In master mode, an Overrun error occurs when the read buffer is full, the 16-bit shifter is full and a new data transfer sequence starts.

When 8-bit mode is selected, the lower byte of the shift register is loaded into the lower byte of the read buffer and the read buffer's higher byte remains unchanged.

The RBF bit indicates if the MWDAT register holds valid data. The OVR bit indicates that an overrun condition has occurred.

27.1.3 Writing

The BSY bit indicates whether the MWDAT register can be written. All write operations to the MWDAT register update the shifter while the data contained in the read buffer is not affected. Undefined results will occur if the MWDAT register is written to while the BSY bit is set.

27.1.4 Clocking Modes

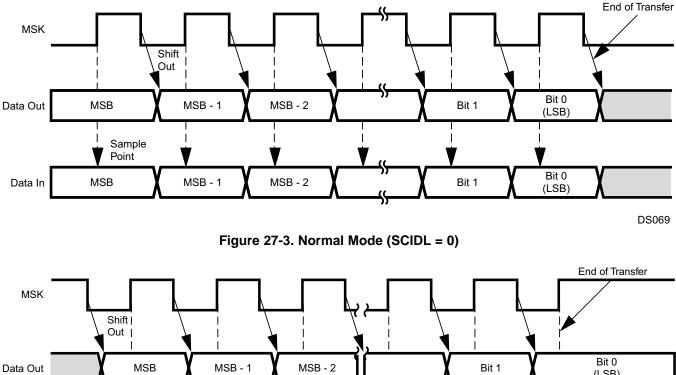
Two clocking modes are supported: the normal mode and the alternate mode.

In the normal mode, the output data, which is transmitted on the MDODI pin (master mode) or the MDIDO pin (slave mode), is clocked out on the falling edge of the shift clock MSK. The input data, which is received via the MDIDO pin (master mode) or the MDODI pin (slave mode), is sampled on the rising edge of MSK.

In the alternate mode, the output data is shifted out on the rising edge of MSK on the MDODI pin (master mode) or MDIDO pin (slave mode). The input data, which is received via MDIDO pin (master mode) or MDODI pin (slave mode), is sampled on the falling edge of MSK.

The clocking modes are selected with the SCM bit. The SCIDL bit allows selection of the value of MSK when it is idle (when there is no data being transferred). Various MSK clock frequencies can be programmed via the MCDV bits.Figure 27-3, Figure 27-4, Figure 27-5, and Figure 27-6 show the data transfer timing for the normal and the alternate modes with the SCIDL bit clear and set.

Note that when data is shifted out on MDODI (master mode) or MDIDO (slave mode) on the leading edge of the MSK clock, bit 14 (16-bit mode) is shifted out on the second leading edge of the MSK clock. When data are shifted out on MDODI (master mode) or MDIDO (slave mode) on the trailing edge of MSK, bit 14 (16-bit mode) is shifted out on the first trailing edge of MSK.



CP3CN37

www.ti.com

27.2 MASTER MODE

In Master mode, the MSK pin is an output for the shift clock, MSK. When data is written to the MWDAT register, eight or sixteen MSK clocks, depending on the mode selected, are generated to shift the 8 or 16 bits of data, and then MSK goes idle again. The MSK idle state can be either high or low, depending on the SCIDL bit.

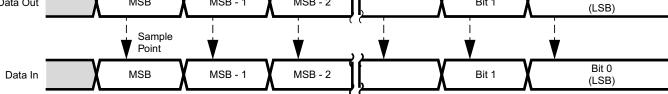


Figure 27-4. Normal Mode (SCIDL = 1)

DS070

CP3CN37

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

INSTRUMENTS

Texas

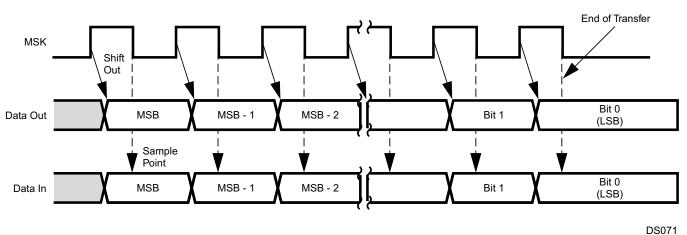
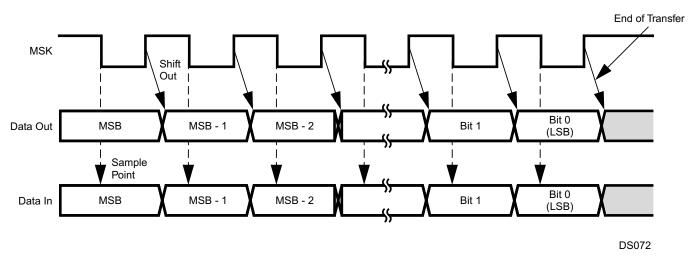



Figure 27-5. Alternate Mode (SCIDL = 0)

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

27.3 SLAVE MODE

In Slave mode, the MSK pin is an input for the shift clock MSK. MDIDO is placed in TRI-STATE mode when MWCS is inactive. Data transfer is enabled when MWCS is active.

The slave starts driving MDIDO when \overline{MWCS} is active. The most significant bit (lower byte in 8-bit mode or upper byte in 16-bit mode) is output onto the MDIDO pin first. After eight or sixteen clocks (depending on the selected mode), the data transfer is completed.

If a new shift process starts before MWDAT was written, that is, while MWDAT does not contain any valid data, and the ECHO bit is set, the data received from MDODI is transmitted on MDIDO in addition to being shifted to MWDAT. If the ECHO bit is clear, the data transmitted on <u>MDIDO</u> is the data held in the MWDAT register, regardless of its validity. The master may negate the <u>MWCS</u> signal to synchronize the bit count between the master and the slave. In the case that the slave is the only slave in the system, <u>MWCS</u> can be tied to ground.

27.4 INTERRUPT GENERATION

Interrupts may be enabled for any of the conditions shown in Table 27-1.

Condition	Status Bit in MWSTAT	Interrupt Enable Bit in MWCTRL1	Description
Not Busy	BSY	EIW	The shifter is ready for the next data transfer sequence.
Read Buffer Full	RBF	EIR	The read buffer is full and waiting to be unloaded.
Overrun	OVF	EIO	A new data transfer sequence started while both the shifter and the read buffer were full.

Table 27-1. Microwire Interrupt Trigger Condition

Figure 27-7 illustrates the interrupt generation logic of this module.

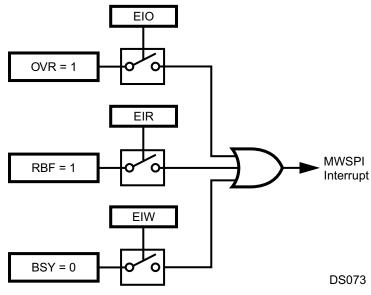


Figure 27-7. MWSPI Interrupts

27.5 DMA SUPPORT

The Microwire module may be operated with either one or two DMA channels. Two DMA channels are required for processor- independent full-duplex operation. Both receive and transmit DMA can be enabled individually. If transmit DMA is enabled (EDW = 1), a DMA request is asserted every time the BSY flag is cleared. Enabling receive DMA (EDR = 1) asserts a DMA request every time the Receive Buffer Full flag (RBF) is set. The Enable Interrupt on Read (EIR) bit must be clear when the EDR bit is set to avoid an interrupt request while using receive DMA. The Enable Interrupt on Write (EIW) bit must be clear when the EDW bit is set. However, a data overrun condition may occur, so the Enable Interrupt on Overrun (EIO) bit should be set.

27.6 MICROWIRE INTERFACE REGISTERS

Software interacts with the Microwire interface by accessing the Microwire registers. There are four such registers:

Name	Address	Description
MWCTL1	FF 8404h	Microwire Control Register
MWCTL2	FF 840Ah	Microwire Control Register
MWSTAT	FF 8408h	Microwire Status Register
MWDAT	FF 8400h	Microwire Data Register

Table 27-2. Microwire Interface Registers

27.6.1 MICROWIRE Control Register (MWCTL1)

The MWCTL1 register is a word-wide, read/write register used to control the Microwire module. To avoid clock glitches, the MWEN bit must be clear while changing the states of any other bits in the register. At reset, all non-reserved bits are cleared. The register format is shown below.

7	6	5	4	3	2	1	0		
SCM	EIW	EIR	EIO	ECHO	MOD	MNS	MWEN		
15						9	8		
			SCDV				SCIDL		
MWEN	The Microwire Enable bit controls whether the Microwire interface module is enabled. 0 – Microwire module disabled. 1 – Microwire module enabled. Clearing this bit disables the module, clears the status bits in the Microwire status register (the BSY, RBF, and OVR bits in MWSTAT), and places the Microwire interface pins in the states described below.								
	Pin	St	ate When Disat	bled					
	MSK	Master – SCIDL	Bit Slave – Input	t					
	MWCS	Input							
	MDIDO	MDIDO Master – Input Slave – TRI-STATE							
	MDODI Master – Known value Slave – Input								
MNS	The Master/Slave Select bit controls whether the CP3CN37 is a master or slave. When clear, the devic slave. When set, the device operates as the master. 0 – CP3CN37 is slave.						operates as a		

1 - CP3CN37 is master.

SNOSCW8A	- JANUARY 2007	DECEMBER 2013
011000110/1	0/11/0/11/1 2007	

MOD	The Mode Select bit controls whether 8- or 16- bit mode is used. When clear, the device operates in 8-bit mode. When set, the device operates in 16-bit mode. This bit must only be changed when the module is disabled or idle (MWSTAT.BSY = 0). 0 - 8-bit mode. 1 - 16-bit mode.
ECHO	The Echo Back bit controls whether the echo back function is enabled in slave mode. This bit must be written only when the Microwire interface is idle (MWSTAT.BSY=0). The ECHO bit is ignored in master mode. The MWDAT register is valid from the time the register has been written until the end of the transfer. In the echo back mode, MDODI is transmitted (echoed back) on MDIDO if the MWDAT register does not contain any valid data. With the echo back function disabled, the data held in the MWDAT register is transmitted on MDIDO, whether or not the data is valid. 0 – Echo back disabled. 1 – Echo back enabled.
EIO	The Enable Interrupt on Overrun bit enables or disables the overrun error interrupt. When set, an interrupt is generated when the Receive Overrun Error bit (MWSTAT.OVR) is set. Otherwise, no interrupt is generated when an overrun error occurs. This bit must only be enabled in master mode. 0 – Disable overrun error interrupts. 1 – Enable overrun error interrupts.
EIR	The Enable Interrupt for Read bit controls whether an interrupt is generated when the read buffer becomes full. When set, an interrupt is generated when the Read Buffer Full bit (MWSTAT.RBF) is set. Otherwise, no interrupt is generated when the read buffer is full. 0 – No read buffer full interrupt. 1 – Interrupt when read buffer becomes full.
EIW	The Enable Interrupt for Write bit controls whether an interrupt is generated when the Busy bit (MWSTAT.BSY) is cleared, which indicates that a data transfer sequence has been completed and the read buffer is ready to receive the new data. Otherwise, no interrupt is generated when the Busy bit is cleared. 0 – No interrupt on data transfer complete. 1 – Interrupt on data transfer complete.
SCM	The Shift Clock Mode bit selects between the normal clocking mode and the alternate clocking mode. In the normal mode, the output data is clocked out on the falling edge of MSK and the input data is sampled on the rising edge of MSK. In the alternate mode, the output data is clocked out on the rising edge of MSK and the input data is sampled on the falling edge of MSK. 0 – Normal clocking mode. 1 – Alternate clocking mode.
SCIDL	The Shift Clock Idle bit controls the value of the MSK output when the Microwire module is idle. This bit must be changed only when the Microwire module is disabled (MEN = 0) or when no bus transaction is in progress (MWSTAT. BSY = 0). 0 – MSK is low when idle. 1 – MSK is high when idle
SCDV	The Shift Clock Divider Value field specifies the divisor used for generating the MSK shift clock from the PCLK Clock. The divisor is $2 \times (\text{SCDV}[6:0] + 1)$. Valid values are 0000001b to 1111111b, so the division ratio may range from 4 to 256. This field is ignored in slave mode (MWCTL1.MNS = 0).

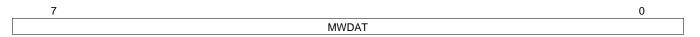
27.6.2 Microwire Module n Control Register 2 (MWCTL2)

The MWCTL2 register is a 16-bit, read/write register used to enable DMA requests. At reset, all non-reserved bits are cleared. The register format is shown below.

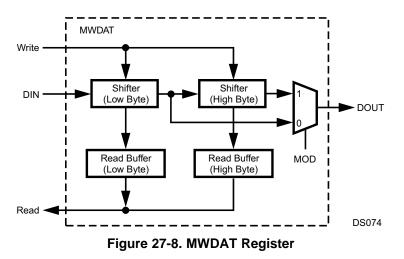
7		2	1	0
	Reserved		EDW	EDR
EDR	The Enable DMA Read bit controls whether a DMA request is enabled when th 0 – DMA request disabled. 1 – DMA request enabled.	ne RBF bi	t in the MWSTAT	register is set.
EDW	The Enable DMA Read bit controls whether a DMA request is enabled when th cleared. 0 – DMA request disabled. 1 – DMA request enabled.	ne BSY bi	t in the MWSTAT	register is

EXAS

www.ti.com


27.6.3 Microwire Status Register (MWSTAT)

The MWSTAT register is a word-wide, read-only register that shows the current status of the Microwire interface module. At reset, all non-reserved bits are clear. The register format is shown below.


15		3	2	1	0
	Reserved		OVR	RBF	BSY
BSY	The Busy bit, when set, indicates that the Microv register is written. In slave mode, the bit is set or MWDAT register is written, whichever occurs firs data transfer sequence is completed and the rea previous data held in the read buffer has already new data has been received into the shift registe because the contents of the shift register could r 0 – Microwire shifter is not busy. 1 – Microwire shifter is busy.	n the first leading edg it. In both master and d buffer is ready to re been read. If the pre r, the BSY bit will not	e of MSK when \overline{M} slave modes, this eceive the new dat vious data in the r be cleared, as the	WCS is asserted bit is cleared whe a; in other words, ead buffer has no	or when the en the Microwire when the t been read and
RBF	The Read Buffer Full bit, when set, indicates that the Microwire read buffer is full and ready to be read by software. It is set when the shifter loads the read buffer, which occurs upon completion of a transfer sequence if the read buffer is empty. The RBF bit is updated when the MWDAT register is read. At that time, the RBF bit is cleared if the shifter does not contain any new data (in other words, the shifter is not receiving data or has not yet received a full byte of data). The RBF bit remains set if the shifter already holds new data at the time that MWDAT is read. In that case, MWDAT is immediately reloaded with the new data and is ready to be read by software. 0 – Microwire read buffer is not full. 1 – Microwire read buffer is full.				
OVR	The Receive Overrun Error bit, when set in mast occurs when the read buffer is full, the 8-bit shift slave mode. The OVR bit, once set, remains set position. Writing a 0 to this bit position has no eff operation to the register. 0 – No receive overrun error has occurred. 1 – Receive overrun error has occurred.	er is full, and a new d until cleared by softw	ata transfer seque vare. Software clea	ence starts. This b ars this bit by writing	it is undefined in ng a 1 to its bit

27.6.4 Microwire Data Register (MWDAT)

The MWDAT register is a word-wide, read/write register used to transmit and receive data through the MDODI and MDIDO pins. The register format is shown below.

Figure 27-8 shows the hardware structure of the register.

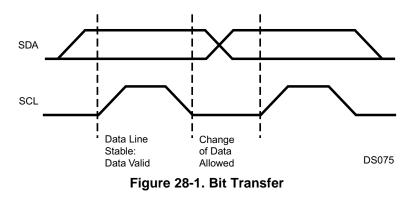
28 ACCESS.BUS INTERFACE

The ACCESS.bus interface module (ACB) is a two-wire serial interface compatible with the ACCESS.bus physical layer. It permits easy interfacing to a wide range of low-cost memories and I/O devices, including: EEPROMs, SRAMs, timers, A/D converters, D/A converters, clock chips, and peripheral drivers. It is compatible with Intel's SMBus and Philips' I²C bus. The ACB module can be configured as a bus master or slave, and can maintain bidirectional communications with both multiple master and slave devices.

This section presents an overview of the bus protocol, and its implementation by the ACB module.

- ACCESS.bus master and slave
- Supports polling and interrupt-controlled operation
- · Generate a wake-up signal on detection of a Start Condition, while in power-down mode
- · Optional internal pullup on SDA and SCL pins
- Interrupt and DMA capability
- Up to 400 kHz bus clock frequency (Fast-mode)

28.1 ACB PROTOCOL OVERVIEW


The ACCESS.bus protocol uses a two-wire interface for bidirectional communication between the devices connected to the bus. The two interface signals are the Serial Data Line (SDA) and the Serial Clock Line (SCL). These signals should be connected to the positive supply, through pull-up resistors, to keep the signals high when the bus is idle.

The ACCESS.bus protocol supports multiple master and slave transmitters and receivers. Each bus device has a unique address and can operate as a transmitter or a receiver (though some peripherals are only receivers).

During data transactions, the master device initiates the transaction, generates the clock signal, and terminates the transaction. For example, when the ACB initiates a data transaction with an ACCESS.bus peripheral, the ACB becomes the master. When the peripheral responds and transmits data to the ACB, their master/slave (data transaction initiator and clock generator) relationship is unchanged, even though their transmitter/receiver functions are reversed.

28.1.1 Data Transactions

One data bit is transferred during each clock period. Data is sampled during the high phase of the serial clock (SCL). Consequently, throughout the clock high phase, the data must remain stable (see Figure 28-1). Any change on the SDA signal during the high phase of the SCL clock and in the middle of a transaction aborts the current transaction. New data must be driven during the low phase of the SCL clock. This protocol permits a single data line to transfer both command/control information and data using the synchronous serial clock.

Each data transaction is composed of a Start Condition, a number of byte transfers (programmed by software), and a Stop Condition to terminate the transaction. Each byte is transferred with the most significant bit first, and after each byte, an Acknowledge signal must follow.

At each clock cycle, the slave can stall the master while it handles the previous data, or prepares new data. This can be performed for each bit transferred or on a byte boundary by the slave holding SCL low to extend the clock-low period. Typically, slaves extend the first clock cycle of a transfer if a byte read has not yet been stored, or if the next byte to be transmitted is not yet ready. Some microcontrollers with limited hardware support for ACCESS.bus extend the access after each bit, to allow software time to handle this bit.

Start and Stop

The ACCESS.bus master generates Start and Stop Conditions (control codes). After a Start Condition is generated, the bus is considered busy and it retains this status until a certain time after a Stop Condition is generated. A high-tolow transition of the data line (SDA) while the clock (SCL) is high indicates a Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition (Figure 28-2).

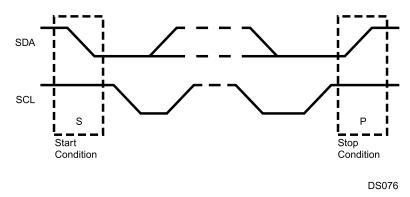


Figure 28-2. Start and Stop Conditions

In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction. This allows another device to be accessed, or a change in the direction of the data transfer.

Acknowledge Cycle

The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte transferred, and the acknowledge signal sent by the receiving device (Figure 28-3).

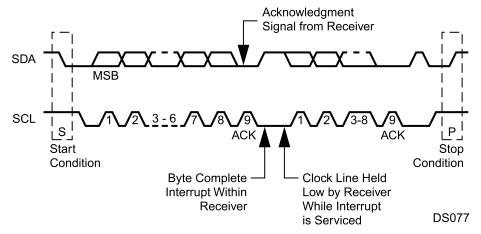


Figure 28-3. ACCESS.bus Data Transaction

The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver must pull down the SDA line during the acknowledge clock pulse, which signals the correct reception of the last data byte, and its readiness to receive the next byte. Figure 28-4 illustrates the acknowledge cycle.

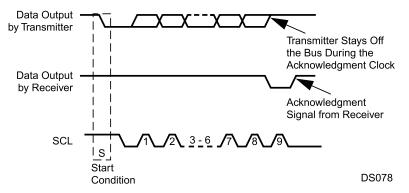


Figure 28-4. ACCESS.bus Acknowledge Cycle

The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge signal after every byte received. There are two exceptions to the "acknowledge after every byte" rule

- When the master is the receiver, it must indicate to the transmitter an end-of-data condition by notacknowledging ("negative acknowledge") the last byte clocked out of the slave. This "negative acknowledge" still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.
- When the receiver is full, otherwise occupied, or a problem has occurred, it sends a negative acknowledge to indicate that it cannot accept additional data bytes.

Addressing Transfer Formats

Each device on the bus has a unique address. Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device should send an acknowledge signal on the SDA signal, once it recognizes its address.

The address is the first seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the address (the eighth bit). A low-to-high transition during a SCL high period indicates the Stop Condition, and ends the transaction (Figure 28-5).

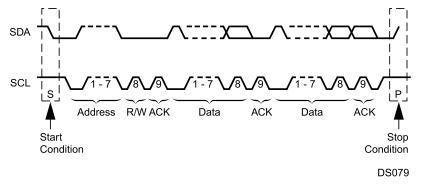


Figure 28-5. A Complete ACCESS.bus Data Transaction

When the address is sent, each device in the system compares this address with its own. If there is a match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the R/\overline{W} bit (1 = read, 0 = write), the device acts as a transmitter or a receiver.

The ACCESS.bus protocol allows sending a general call address to all slaves connected to the bus. The first byte sent specifies the general call address (00h) and the second byte specifies the meaning of the general call (for example, "Write slave address by software only"). Those slaves that require the data acknowledge the call and become slave receivers; the other slaves ignore the call.

Arbitration on the Bus

Arbitration is required when multiple master devices attempt to gain control of the bus simultaneously. Control of the bus is initially determined according to address bits and clock cycle. If the masters are trying to address the same bus device, data comparisons determine the outcome of this arbitration. In master mode, the device immediately aborts a transaction if the value sampled on the SDA lines differs from the value driven by the device. (Exceptions to this rule are SDA while receiving data; in these cases the lines may be driven low by the slave without causing an abort.)

The SCL signal is monitored for clock synchronization and allows the slave to stall the bus. The actual clock period will be the one set by the master with the longest clock period or by the slave stall period. The clock high period is determined by the master with the shortest clock high period.

When an abort occurs during the address transmission, the master that identifies the conflict should give up the bus, switch to slave mode, and continue to sample SDA to see if it is being addressed by the winning master on the ACCESS. bus.

28.2 ACB FUNCTIONAL DESCRIPTION

The ACB module provides the physical layer for an ACCESS. bus compliant serial interface. The module is configurable as either a master or slave device. As a slave, the ACB module may issue a request to become the bus master.

28.2.1 Master Mode

An ACCESS.bus transaction starts with a master device requesting bus mastership. It sends a Start Condition, followed by the address of the device it wants to access. If this transaction is successfully completed, software can assume that the device has become the bus master.

For a device to become the bus master, software should perform the following steps:

- 1. Set the ACBCTL1.START bit, and configure the ACBCTL1.INTEN bit to the desired operation mode (Polling or Interrupt). This causes the ACB to issue a Start Condition on the ACCESS.bus, as soon as the ACCESS.bus is free (ACBCST.BB=0). It then stalls the bus by holding SCL low.
- 2. If a bus conflict is detected, (that is, some other device pulls down the SCL signal before this device does), the ACBST.BER bit is set.
- 3. If there is no bus conflict, the ACBST.MASTER and ACBST.SDAST bits are set.
- 4. If the ACBCTL1.INTEN bit is set, and either the ACBST. BER bit or the ACBST.SDAST bit is set, an interrupt is asserted.

Sending the Address Byte

Once this device is the active master of the ACCESS.bus (ACBST.MASTER = 1), it can send the address on the bus. The address must not be this device's own address as specified in the ACBADDR.ADDR field if the ACBADDR.SAEN bit is set or the ACBADDR2.ADDR field if the ACBADDR2.SAEN bit is set. The address also must not be the global call address if the ACBST.GCMTCH bit is set or the ARP address if the ACBST.ARPMATCH bit is set.

To send the address byte, use the following sequence:

- 1. Load the ACBCTL1.INTEN and ACBCTL1.DMAEN bits for the desired operation mode. For a receive transaction where software wants only one byte of data, it should set the ACBCTL1.ACK bit. If only an address needs to be sent, set the ACBCTL1.STASTRE bit.
- 2. Write the address byte (7-bit target device address), and the direction bit, to the ACBSDA register. This causes the module to generate a transaction. At the end of this transaction, the acknowledge bit received is copied to the ACBST.NEGACK bit. During the transaction, the SDA and SCL signals are continuously checked for conflict with other devices. If a conflict is detected, the transaction is aborted, the ACBST.BER bit is set, and the ACBST.MASTER bit is cleared.
- 3. If the ACBCTL1.STASTRE bit is set and the transaction was successfully completed (that is, both the ACBST.BER and ACBST.NEGACK bits are cleared), the ACBST. STASTR bit is set. In this case, the ACB stalls any further ACCESS.bus operations (that is, holds SCL low). If the ACBCTL1.INTE bit is set, an interrupt is asserted.
- 4. If the requested direction is transmit, and the start transaction was completed successfully (that is, neither the ACBST.NEGACK nor ACBST.BER bit is set, and no other master has accessed the device), the ACBST. SDAST bit is set to indicate that the module is waiting for service.
- 5. If the requested direction is receive, the start transaction was completed successfully, and the ACBCTL1.STASTRE bit is clear, the module starts receiving the first byte automatically.
- Check that both ACBST.BER and ACBST.NEGACK are clear. If either ACBCTL1.INTEN or ACBCTL1.DMAEN is set, an interrupt is asserted when either the ACBST. BER or ACBST.NEGACK bit is set.

Master Transmit

After becoming the bus master, the device can start transmitting data on the ACCESS.bus. To transmit a byte using interrupts or polling, software must:

- 1. Check that the BER and NEGACK bits in the ACBST register are clear and the ACBST.SDAST bit is set. Also, if the ACBCTL1.STASTRE bit is set, check that the ACBST.STASTR bit is clear.
- 2. Write the data byte to be transmitted to the ACBSDA register.

To transmit a byte using DMA, software must:

- 1. If the ACBCTL1.DMAEN bit was set before the start transaction, a DMA request is generated automatically at the end of the address transaction and each following transaction unless for some reason (for example, ACBCST, MATCH, or BER were set) an interrupt was asserted.
- 2. When the ACBST.NEGACK or ACBST.BER bits are set, an interrupt is asserted, and the module stops sending DMA requests.

When the slave responds with a negative acknowledge, the ACBST.NEGACK bit is set and the ACBST.SDAST bit remains clear. In this case, if the ACBCTL1.INTEN or ACBCTL1.DMAEN bit is set, an interrupt is asserted.

Master Receive

After becoming the bus master, the device can start receiving data on the ACCESS.bus. To receive a byte using interrupts or polling, software must:

- 1. Check that the ACBST.SDAST bit is set and the ACBST. BER bit is clear. Also, if the ACBCTL1.STASTRE bit is set, check that the ACBST.STASTR bit is clear.
- 2. Set the ACBCTL1.ACK bit, if the next byte is the last byte that should be read. This causes a negative acknowledge to be sent.
- 3. Read the data byte from the ACBSDA register.

To receive a byte using DMA, software must:

- 1. The DMA request becomes active after the module receives a byte of data. If an error occurs during the transaction (for example, ACBCST.NMATCH or ACBST.BER is set), an interrupt is asserted and DMA is stalled.
- 2. Before receiving the last byte of data, set the ACBCTL1.ACK bit. This should be done by programming the DMA to interrupt the CPU one byte before the end of the transmission and letting the software set the ACBCTL1.ACK bit.

Master Stop

A Stop Condition may be issued only when this device is the active bus master (ACBST.MASTRER = 1). To end a transaction, set the ACBCTL1.STOP bit before clearing the current stall bit (that is, the ACBST.SDAST, ACBST.NEGACK, or ACBST.STASTR bit). This causes the module to send a Stop Condition immediately, and clear the ACBCTL1.STOP bit.

Master Bus Stall

The ACB module can stall the ACCESS.bus between transfers while waiting for the APB bus master (CPU or DMA controller) response. The ACCESS.bus is stalled by holding the SCLn signal low after the acknowledge cycle. Note that this is interpreted as the beginning of the following bus operation. Software must make sure that the next operation is prepared before the bit that causes the bus stall is cleared.

The bits that can cause a stall in master mode are:

- Negative acknowledge after sending a byte (ACBSTNEGACK = 1).
- ACBST.SDAST bit is set.
- If the ACBCTL1.STASTRE bit is set, after a successful start (ACBST.STASTR = 1).

Repeated Start

A repeated start is performed when this device is already the bus master (ACBST.MASTER = 1). In this case, the ACCESS. bus is stalled and the ACB waits for software intervention to handle the condition: negative acknowledge (ACBST.NEGACK = 1), empty buffer (ACBST.SDAST = 1), or a stop-after-start (ACBST.STASTR = 1).

For a repeated start:

- 1. Set the ACBCTL1.START bit.
- 2. In master receive mode, read the last data item from the ACBSDA register.
- 3. Follow the address send sequence, as described in Sending the Address Byte.
- 4. If the ACB was waiting for handling due to ACBST. STASTR = 1, clear it only after writing the requested address and direction to the ACBSDA register.

Master Error Detections

The ACB detects illegal Start or Stop Conditions (that is, a Start or Stop Condition within the data transfer or the acknowledge cycle) and a conflict on the data lines of the ACCESS. bus. If an illegal action is detected, the BER bit is set, and the MASTER mode is exited (the MASTER bit is cleared).

Bus Idle Error Recovery

When a request to become the active bus master or a restart operation fails, the ACBST.BER bit is set to indicate the error. In some cases, both this device and the other device may identify the failure and leave the bus idle. In this case, the start sequence may not be completed and the ACCESS. bus may remain deadlocked.

To recover from deadlock, use the following sequence:

- 1. Clear the ACBST.BER and ACBCST.BB bits.
- 2. Wait for a time-out period to check that there is no other active master on the bus (that is, the ACBCST.BB bit remains clear).
- 3. Disable, and re-enable the ACB to put it in the non-addressed slave mode.
- 4. At this point, some of the slaves may not identify the bus error. To recover, the ACB becomes the bus master by issuing a Start Condition and sends an address field. Then, it issues a Stop Condition to synchronize all the slaves.

28.2.2 Slave Mode

A slave device waits in Idle mode for a master to initiate a bus transaction. Whenever the ACB is enabled with a clear ACBST.MASTER bit, it acts as a slave device.

Once a Start Condition on the bus is detected, this device checks whether the address sent by the current master matches either:

- ACBADDR.ADDR, if the ACBADDR.SAEN bit is set.
- ACBADDR2.ADDR, if the ACBADDR2.SAEN bit is set.
- The general call address, if the ACBCTL1.GCM bit is set.
- The global ARP address, if the ACBCTL3.ARPMEN bit is set.

This match is checked even when the ACBST.MASTER bit is set. If a bus conflict (on SDA or SCL) is detected, the ACBST.BER bit is set, the ACBST.MASTER bit is cleared, and this device continues to search the received message for a match. If an address match, ARP match, or a global match, is detected:

- 1. This device asserts its data pin during the acknowledge cycle.
- 2. The ACBCST.MATCH, ACBCST.MATCHAF (or ACBCST.GCMTCH if it is a global call address match, or ACBCST.ARPMATCH if it is an ARP address), and ACBST.NMATCH in the ACBCST register are set. If the ACBST.XMIT bit is set (that is, slave transmit mode), the ACBST.SDAST bit is set to indicate

ISTRUMENTS

www.ti.com

that the buffer is empty.

- 3. If the ACBCTL1.INTEN bit is set, an interrupt is asserted if both the INTEN and NMINTE bits in the ACBCTL1 register are set.
- 4. Software then reads the ACBST.XMIT bit to identify the direction requested by the master device. It clears the ACBST.NMATCH bit so future byte transfers are identified as data bytes.

Slave Receive and Transmit

Slave Receive and Transmit are performed after a match is detected and the data transfer direction is identified. After a byte transfer, the ACB extends the acknowledge clock until software reads or writes the ACBSDA register. The receive and transmit sequence are identical to those used in the master routine.

Slave Bus Stall

When operating as a slave, this device stalls the ACCESS. bus by extending the first clock cycle of a transaction in the following cases:

- The ACBST.SDAST bit is set.
- The ACBST.NMATCH, and ACBCTL1.NMINTE bits are set.

Slave Error Detections

The ACB detects illegal Start and Stop Conditions on the ACCESS.bus (that is, a Start or Stop Condition within the data transfer or the acknowledge cycle). When an illegal Start or Stop Condition is detected, the BER bit is set and the MATCH and GMATCH bits are cleared, causing the module to be an unaddressed slave.

28.2.3 Power Down

When this device is in Power Save, Idle, or Halt mode, the ACB module is not active but retains its status. If the ACB is enabled (ACBCTL2.ENABLE = 1) on detection of a Start Condition, a wake-up signal is issued to the MIWU module. Use this signal to switch this device to Active mode.

ACB module cannot check the address byte for a match following the start condition that caused the wake-up event for this device. The ACB responds with a negative acknowledge, and the device should resend both the Start Condition and the address after this device has had time to wake up.

Check that the ACBCST.BUSY bit is inactive before entering Power Save, Idle, or Halt mode. This guarantees that the device does not acknowledge an address sent and stop responding later.

28.2.4 SDA and SCL Pins Configuration

The SDA and SCL pins are driven as open-drain signals. For more information, see the I/O configuration section.

28.2.5 ACB Clock Frequency Configuration

The ACB module permits software to select the frequency used for the ACCESS.bus clock. The clock period is set by the ACBCTL2.SCLFRQ6:0 and ACBCTL3.SCLFRQ8:7 fields. Together, they form a 9-bit value that specifies the SCL clock period. This clock low period may be extended by stall periods initiated by the ACB module or by another ACCESS. bus device. In case of a conflict with another bus master, a shorter clock high period may be forced by the other bus master until the conflict is resolved.

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

28.3 ACCESS.BUS INTERFACE REGISTERS

The ACCESS.bus interface uses the registers listed in Table 28-1.

Table 28-1. ACCESS.bus Interface Registers

Name	Address	Description		
ACBSDA	FF 8000h	ACB Serial Data Register		
ACBST	FF 8004h	ACB Status Register		
ACBCST	FF 8008h	ACB Control Status Register		
ACBCTL1	FF 800Ch	ACB Control Register 1		
ACBCTL2	FF 8014h	ACB Control Register 2		
ACBCTL3	FF 801Ch	ACB Control Register 3		
ACBADDR1	FF 8010h	ACB Own Address Register 1		
ACBADDR2	FF 8018h	ACB Own Address Register 2		

28.3.1 ACB Serial Data Register (ACBSDA)

The ACBSDA register is a byte-wide, read/write shift regis- ter used to transmit and receive data. The most significant bit is transmitted (received) first and the least significant bit is transmitted (received) last. Reading or writing to the ACB- SDA register is allowed when ACBST.SDAST is set; or for repeated starts after setting the START bit. An attempt to access the register in other cases produces unpredictable results.

7

DATA

0

28.3.2 ACB Status Register (ACBST)

The ACBST register is a byte-wide, read-only register that maintains current ACB status. When reset, disabled, or in Halt or Idle modes, ACBST is cleared.

7	6	5	4	3	2	1	0	
SLVSTP	SDAST	BER	NEGACK	STASTR	NMATCH	MASTER	XMIT	
XMIT	The Direction Bit bit is set when the ACB module is currently in master/slave transmit mode. Otherwise it is cleared. 0 – Receive mode. 1 – Transmit mode.							
MASTER	The Master bit indicates that the module is currently in master mode. It is set when a request for bus mastership succeeds. It is cleared upon arbitration loss (BER is set) or the recognition of a Stop Condition. 0 – Slave mode. 1 – Master mode.							
NMATCH	The New match bit is set when the address byte following a Start Condition, or repeated starts, causes a match or a global-call match. The NMATCH bit is cleared when written with 1. Writing 0 to NMATCH is ignored. If the ACBCTL1.INTEN bit is set, an interrupt is sent when this bit is set. 0 – No match. 1 – Match or global-call match.							
STASTR	The Stall After Start bit is set by the successful completion of an address sending (that is, a Start Condition sent without a bus error, or negative acknowledge), if the ACBCTL1.STASTRE bit is set. This bit is ignored in slave mode. When the STASTR bit is set, it stalls the bus by pulling down the SCL line, and suspends any other action on the bus (for example, receives first byte in master receive mode). In addition, if the ACBCTL1.INTEN bit is set, it also sends an interrupt to the core. Writing 1 to the STASTR bit clears it. It is also cleared when the module is disabled. Writing 0 to the STASTR bit has no effect. 0 – No stall after start condition. 1 – Stall after successful start.							
NEGACK	The Negative Acknowledge bit is set by hardware when a transmission is not acknowledged on the ninth clock. (In this case, the SDAST bit is not set.) Writing 1 to NEGACK clears it. It is also cleared when the module is disabled. Writing 0 to the NEGACK bit is ignored. 0 – No transmission not acknowledged condition. 1 – Transmission not acknowledged.							
BER	The Bus Error bit is set by the hardware when a Start or Stop Condition is detected during data transfer (that is, Start or Stop Condition during the transfer of bits 2 through 8 and acknowledge cycle), or when an arbitration problem is detected. Writing 1 to the BER bit clears it. It is also cleared when the module is disabled. Writing 0 to the BER bit is ignored. 0 – No bus error occurred. 1 – Bus error occurred.							
SDAST	should be read (i or when written to the SDAST bit. T 0 – ACB module	receive, as master o during a transm	r or slave). This b it. When the ACB CB to send a rep data transfer.	it is cleared when CTL1.START bit is eated start in mas	reading from the s set, reading the	master or slave) c ACBSDA register ACBSDA register	during a receive,	
SLVSTP	which MATCH or 0 to SLVSTP is i 0 – No stop cond	GCMATCH is se	t). Writing 1 to SL ansfer occurred.			hat is, after a slave en the module is o		

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

28.3.3 ACB Control Status Register (ACBCST)

The ACBCST register is a byte-wide, read/write register that maintains current ACB status. When reset, disabled, or in Halt or Idle modes, the non-reserved bits of ACBCST are cleared.

7	6	5	4	3	2	1	0
ARPMATCH	MATCHAF	TGSCL	TSDA	GCMTCH	MATCH	BB	BUSY
BUSY	Generating aIn Master mod	cates that the ACE Start Condition ode (ACBST.MAS	TER is set)	SCMTCH is set)			
	 In Slave mode (ACBCST.MATCH or ACBCST.GCMTCH is set) In the period between detecting a Start and completing the reception of the ad- dress byte. After this, the ACB either be- comes not busy or enters slave mode. O - ACB module is not busy 1 - ACB module is busy 						
BB	by a Start Condit bit. See Usage H low. This is done	ion. It is cleared w ints for a descript by sampling the s cleared by a STC	vhen the module i ion of the use of t SDA and SCL sig	when the bus is ac s disabled, on dete his bit. This bit sho nals continuously a itten with 1.	ection of a Stop C ould be set when e	ondition, or when either the SDA or	writing 1 to this SCL signals are
МАТСН	(the first byte tran ACBADDR2.SAE	nsferred after a St N is set and the f ired by Start Conc natch occurred.	art Condition) mainst seven bits of t	n ACBADDR.SAEI tches the 7-bit add the address byte n Start and Stop Co	Iress in the ACBA natches the 7-bit a	DDR register, or address in the AC	when BADDR2
GCMTCH	transferred after a (including illegal	a Start Condition) Start or Stop Cond I match occurred.	is 00h. It is cleare	the ACBCTL1.GC			
TSDA				al. This bit can be lave that went out			
TGSCL	The Toggle SCL bit enables toggling the SCL signal during error recovery. When the SDA signal is low, writing 1 to this bit drives the SCL signal high for one cycle. Writing 1 to TGSCL when the SDA signal is high is ignored. The bit is cleared when the clock toggle is completed. 0 – Writing 0 has no effect. 1 – Writing 1 toggles the SDA signal high for one cycle.						
MATCHAF	MATCHAF bit is Illegal Start and S 0 – ACBADDR.A		CHAF bit is clear so clear the MAT d the slave addre	SS.			
ARPMATCH	is set and the add Start condition, re 0 – Slave addres	dress byte (first by	/te transferred aft dition, or Stop cor 01b.	match occurs. Th er a Start condition ndition. Illegal Star was 110 0001b.	n) is 110 0001b. T	he ARPMATCH	bit is cleared by a

www.ti.com

NSTRUMENTS

EXAS

28.3.4 ACB Control Register 1 (ACBCTL1)

The ACBCTL1 register is a byte-wide, read/write register that configures and controls the ACB module. When reset, disabled, or in Halt or Idle modes, the ACBCTL1 register is cleared.

7	6	5	4	3	2	1	0
STASTRE	NMINTE	GCMEN	ACK	DMAEN	INTEN	STOP	START
START	is sent, or upon d requesting Maste generates a Start then be performe write to the ACBS and the requested	letection of a Bus r mode. If this der ConOdition as so d. If this device is SDA register gene d transfer directio n the master and no effect.	Error (ACBST.Bf vice is not the action on as the ACCEs the active maste erates a Start Cor n. This case is a the slave, or to c	ER = 1). This bit sl tive master of the l SS.bus is free (AC or of the bus (ACB) dition, then the AC repeated Start Co	The START bit is hould be set only v bus (ACBST.MAS BCST.BB = 0). Ar ST.MASTER = 1), CBSDA data is tra ndition. It may be ve device without	when in Master n TER = 0), setting address send s when the STAR nsmitted as the s used to switch th	node, or when the START bit equence should T bit is set, a slave's address e direction of the
STOP	The Stop bit in m clears itself after 0 – Writing 0 has 1 – Writing 1 gen	the Stop conditior no effect.	n is issued.	dition that complet	es or aborts the c	urrent message t	ransfer. This bit
INTEN	 The Interrupt Enable bit controls generating ACB interrupts. When the INTEN bit is cleared ACB interrupt is disabled. When the INTEN bit is set, interrupts are enabled. ACB interrupts disabled. ACB interrupts enabled. An interrupt is generated (the interrupt signals to the ICU is high) on any of the following events: An address MATCH is detected (ACBST. NMATCH = 1) and the NMINTE bit is set. A Bus Error occurs (ACBST.BERR = 1). Negative acknowledge after sending a byte (ACBST.NEGACK = 1). An interrupt is generated on acknowledge of each transaction (same as hardware setting the ACBST.SDAST bit). If ACBCTL1.STASTRE = 1, in master mode after a successful start (ACBST.STASTR = 1). 						
DMAEN	The DMA Enable	bit controls wheth ST.SDAST = 1). I s disabled.	her DMA request		DMA request is as ated upon occurre		
ACK	Setting this bit to	1 instructs the tra	ansmitting device	to stop sending da	lave mode during ata, since the rece wledge cycle. This	iver either does r	not need, or
GCMEN		d by address byte atching disabled.			ddress byte to the node. When clear		ress (Start s not respond to a
NMINTE		ipt on a new mato l bit is set. iterrupts disabled.	ch (that is, when A		generated on new is set). The intern		
STASTRE		en the STASTRE start.			n. When enabled, t bit is always clear.		d after the

28.3.5 ACB Control Register 2 (ACBCTL2)

The ACBCTL2 register is a byte-wide, read/write register that controls the module and selects the ACB clock rate. At reset, the ACBCTL2 register is cleared.

7	1	0
	SCLFRQ6:0	ENABLE
ENABLE	The Enable bit controls the ACB module. When this bit is set, the ACB module is enabled. When the Ena the ACB module is disabled, the ACBCTL1, ACBST, and ACBCST registers are cleared, and the clocks a 0 – ACB module disabled. 1 – ACB module enabled. 1 – ACB module enabled. 1 – ACB module enabled.	
SCLFRQ	The SCL Frequency field specifies the low 7 bits of the SCL period (low time plus high time) in master me ACBCTL3 register holds the high 2 bits. The clock low time and high time are defined as follows:	ode. The
	$t_{SCLI} = t_{SCLh} = 2 \times SCLFRQ8:0 \times t_{CLK}$	
	where	

• t_{CLK} is the P_{CLK} Clock period.

(28)

28.3.6 ACB Control Register 3 (ACBCTL3)

The ACBCTL3 register is a byte-wide, read/write register that expands the clock prescaler field and enables ARP matches. At reset, the ACBCTL3 register is cleared.

7	3	2	1	0
	Reserved	ARPMEN	SCLF	RQ8:7
ARPMEN	The ARP Match Enable bit enables the matching of an incoming add general call address (Start condition followed by address byte of 00h 0 – ACB does not respond to ARP addresses. 1 – ARP address matching enabled.			s 110 0001b
SCLFRQ	The SCL Frequency field specifies the SCL period (low time plus higl provides a 2-bit expansion of this field, with the remaining 7 bits bein			L3 register

28.3.7 ACB Own Address Register 1 (ACBADDR1)

The ACBADDR1 register is a byte-wide, read/write register that holds the module's first ACCESS.bus address. After reset, its value is undefined.

7	6	0
SAEN	ADDR	
ADDR	The Own Address field holds the first 7-bit ACCESS. bus address of this device. When in slave received after a Start Condition are compared to this field (first bit received to bit 6, and the last field matches the received data and the SAEN bit is set, a match is detected.	
SAEN	The Slave Address Enable bit controls whether address matching is performed in slave mode. N indicates that the ADDR field holds a valid address and enables the match of ADDR to an incorr cleared, the ACB does not check for an address match. 0 – Address matching disabled. 1 – Address matching enabled0.	

28.3.8 ACB Own Address Register 2 (ACBADDR2)

The ACBADDR2 register is a byte-wide, read/write register that holds the module's second ACCESS.bus address. After reset, its value is undefined.

7	6	0
SAEN	ADDR	
ADDR	The Own Address field holds the second 7-bit ACCESS.bus address of this device. When in received after a Start Condition are compared to this field (first bit received to bit 6, and the la field matches the received data and the SAEN bit is set, a match is detected.	
SAEN	The Slave Address Enable bit controls whether address matching is performed in slave mode indicates that the ADDR field holds a valid address and enables the match of ADDR to an incleared, the ACB does not check for an address match. 0 – Address matching disabled. 1 – Address matching enabled.	

28.4 USAGE HINTS

- When the ACB module is disabled, the ACBCST.BB bit is cleared. After enabling the ACB (ACBCTL2.ENABLE = 1) in systems with more than one master, the bus may be in the middle of a transaction with another device, which is not reflected in the BB bit. There is a need to allow the ACB to synchronize to the bus activity status before issuing a request to become the bus master, to prevent bus errors. Therefore, before issuing a request to become the bus master for the first time, software should check that there is no activity on the bus by checking the BB bit after the bus allowed timeout period.
- When waking up from power down, before checking the ACBCST.MATCH bit, test the ACBCST.BUSY bit to make sure that the address transaction has finished.
- The BB bit is intended to solve a deadlock in which two, or more, devices detect a usage conflict on the bus and both devices cease being bus masters at the same time. In this situation, the BB bits of both devices are active (because each deduces that there is another master currently performing a transaction, while in fact no device is executing a transaction), and the bus would stay locked until some device sends a ACBCTL1.STOP condition. The ACBCST.BB bit allows software to monitor bus usage, so it can avoid sending a STOP signal in the middle of the transaction of some other device on the bus. This bit detects whether the bus remains unused over a certain period, while the BB bit is set.
- In some cases, the bus may get stuck with the SCL or SDA lines active. A possible cause is an erroneous Start or Stop Condition that occurs in the middle of a slave receive session. When the SCL signal is stuck active, there is nothing that can be done, and it is the responsibility of the module that holds the bus to release it. When the SDA signal is stuck active, the ACB module enables the release of the bus by using the following sequence. Note that in normal cases, the SCL signal may be toggled only by the bus master. This protocol is a recovery scheme which is an exception that should be used only in the case when there is no other master on the bus. The recovery procedure is as follows:
 - 1. Disable and re-enable the module to set it into the not addressed slave mode.
 - 2. Set the ACBCTL1.START bit to make an attempt to issue a Start Condition.
 - 3. Check if the SDA signal is active (low) by reading ACBCST.TSDA bit. If it is active, issue a single SCL cycle by writing 1 to ACBCST.TGSCL bit. If the SDA line is not active, continue from step 5.
 - 4. Check if the ACBST.MASTER bit is set, which indicates that the Start Condition was sent. If not, repeat step 3 and 4 until the SDA signal is released.
 - 5. Clear the BB bit. This enables the START bit to be executed. Continue according to Bus Idle Error Recovery.

STRUMENTS

www.ti.com

29 REAL TIME CLOCK

The Real Time Clock module (RTC) implements a 32-bit counter with a 16-bit programmable prescaler, driven by the 32.768 kHz Slow Clock through a 5-bit clock divider, as shown in Figure 29-1. This provides a timebase with a long wraparound period (over 136 years) and the ability to schedule long-duration time delays and periodic interrupts. Three compare registers are implemented: one register for asserting an interrupt on wraparound of the programmable prescaler and two registers for asserting interrupts when the 32-bit counter reaches specified values.

The RTC is typically programmed to divide a 32.768 kHz Slow Clock by 32, which provides a 1024 Hz clock input to the 16-bit prescaler. The prescaler is typically programmed for division by 1024, resulting in a 1 Hz clock input to the 32- bit counter. However, the RTC can operate with a different Slow Clock frequency, an input clock divisor of 1, 2, 4, 8, 16, or 32, and any integer prescaler divisor between 1 and 65,536 (decimal).

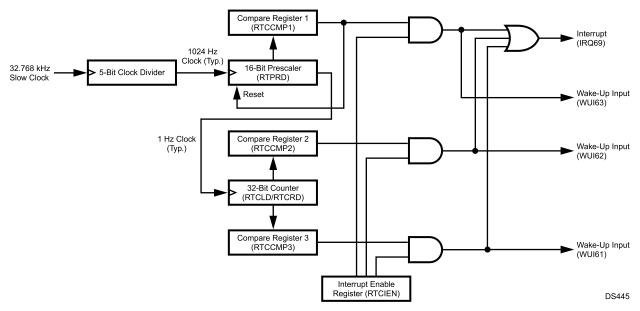


Figure 29-1. Real Time Clock

29.1 PROGRAMMING

When software changes any of the timing parameters, the change is delayed until it can be accepted synchronously to the operation of the RTC. Software can poll register bits which indicate when the change has been accepted.

- Clock divider—when the RTDIV field of the RTCCST register is written, the new divisor is not accepted until the end of the divider period using the old divisor. While the change is pending but not yet accepted, the RTUDIV bit in the RTUDST register will be set.
- Prescaler—the prescaler divisor is controlled by the RTCCMP1 register. When this register is loaded, the RTUCP1 bit in the RTUDIV register is set, and it remains set until the new value is accepted.
- Counter—the counter is loaded by writing the RTCLD register. When this register is written, the RTURTC bit in the RTUDST register is set, and it remains set until the new value is accepted, which occurs at the next rising edge of the counter input clock (prescaler output).

When software reads the current prescaler value in the RTPRD register or the current counter value in the RTCRD register, the data is delayed by four PCLK Clock cycles for synchronization to the bus. Reading these registers within one second after wake-up from Idle mode may return incorrect values. Raising the clock input to the 32-bit counter above 1 Hz provides a proportional reduction of the time during which incorrect values may be returned. Timekeeping is not affected by these incorrect values.

29.2 INTERRUPT

The events enabled in the RTCIEN register are ORed together to generate the interrupt request signal IRQ69. The three individual events RTCEVT1, RTCEVT2, and RTCEVT3 are mapped to MIWU inputs WUI63, WUI62, and WUI61, respectively.

29.3 **RESET**

After software starts the RTC by setting the RTSTRT bit in the RTCCST register, software cannot stop the RTC. The RTC can only be stopped by a power-on reset.

A system reset (except a power-on reset) does not affect the contents of the timing parameters, which allows the RTC to continue functioning through system reset events. Only a power-on reset stops counting and resets the RTC registers to their default values. If a system reset occurs while changes to the timing parameters are pending, those changes will be discarded without being accepted.

The prescaler can be reset by setting the RTPRST bit in the RTCCST register. The reset will occur on the next rising edge of the prescaler input clock (divider output). After software sets the RTPRST bit, the bit remains set until the prescaler is reset.

29.4 REAL-TIME CLOCK INTERFACE REGISTERS

The Real-Time Clock interface uses the registers listed in Table 29-1.

Table 29-1. Real-Time Clock Interface Registers

Name	Address	Description
RTCCST	FF A800h	RTC Control and Status Register
RTUDST	FF A804h	RTC Update Status Register
RTCEIST	FF A808h	RTC Event and Interrupt Status Register
RTCIEN	FF A80Ch	RTC Interrupt Enable Register
RTPRD	FF A810h	RTC Prescaler Read Register
RTCRD	FF A814h	RTC Counter Read Register
RTCLD	FF A818h	RTC Counter Load Register
RTCCMP1	FF A81Ch	RTC Compare Register 1
RTCCMP2	FF A820h	RTC Compare Register 2
RTCCMP3	FF A824h	RTC Compare Register 3

29.4.1 RTC Control and Status Register (RTCCST)

The RTCCST register is an 8-bit, read/write register that provides control and status for the RTC. At system reset, the RTPRST bit is cleared, but the other bits in this register retain their values. At power-on reset, this register is cleared to 00h.

7	5	4	3	2	0
	Reserved	RTSTRT	RTPRST		RTDIV
RTDIV	The RTC Divider field selects th $000 - \div 1$ $001 - \div 2$ $010 - \div 4$ $011 - \div 8$ $100 - \div 16$ $101 - \div 32$	e divisor for the 5-b	it clock divider. Va	llues above 101b a	are reserved.
RTPRST	The RTC Prescaler Reset bit is the prescaler input clock (divide the prescaler is cleared. 0 – Normal operation. 1 – Prescaler reset pending.				ill occur on the next rising edge of rescaler, the bit remains set until
RTSTRT	The RTC Start bit enables the R 0 – RTC suspended. 1 – RTC counting.	TC to count. This b	it is can only be cl	leared by a power-	on reset.

29.4.2 RTC Update Status Register (RTUDST)

The RTUDST register is an 8-bit, read-only register that indicates pending changes to RTC registers. At system reset or power-on reset, this register is cleared to 00h.

7	5	4	3	2	1	0
	Reserved	RTUCP3	RTUCP2	RTUCP1	RTURTC	RTUDIV
RTUDIV	The RTC Update Clock Divisor bit accepted. 0 – No new divisor loaded. 1 – Pending change to the clock d		livisor for the 5-bit	clock divider has	been loaded, but	not yet
RTURTC	The RTC Update Counter bit indic 0 – No new counter value loaded. 1 – Pending change to the counte		for the 32-bit cour	iter has been load	ed, but not yet ac	cepted.
RTUCP1	The RTC Update Compare Register 1 bit indicates a new terminal count value for the 16-bit prescaler has been loaded into the RTCCMP1 register, but not yet accepted. 0 – No new prescaler terminal count loaded. 1 – Pending change to the terminal count.					
RTUCP2	The RTC Update Compare Register 2 bit indicates a new interrupt trigger value for the 32- bit counter has been loaded into the RTCCMP2 register, but not yet accepted. 0 – No new trigger value loaded. 1 – Pending change to the trigger value.					s been loaded
RTUCP3	The RTC Update Compare Regist into the RTCCMP3 register, but no 0 – No new trigger value loaded. 1 – Pending change to the trigger	ot yet accepted.	a new interrupt trig	ger value for the 3	32- bit counter has	s been loaded

29.4.3 RTC Event and Interrupt Status Register (RTCEIST)

The RTCEIST register is an 8-bit, read/write register that indicates the status of match events from the compare registers. Individual bits in this register can be cleared by writing them with 1. At system reset or power-on reset, this register is cleared to 00h.

7		3	2	1	0
	Reserved		RTCEVT3	RTCEVT2	RTCEVT1
RTCEVT1	The RTC Event 1 bit indicates a match occurred be 0 – No match occurred since this bit was last clear 1 – A match occurred.		P1 register and th	e 16-bit prescaler	
RTCEVT2	The RTC Event 2 bit indicates a match occurred between the RTCCMP2 register and the 32-bit counter. 0 – No match occurred since this bit was last cleared. 1 – A match occurred.				
RTCEVT3	The RTC Event 3 bit indicates a match occurred be 0 – No match occurred since this bit was last clear 1 – A match occurred.		P3 register and th	e 32-bit counter.	

29.4.4 RTC Interrupt Enable Register (RTCIEN)

The RTCIEN register is an 8-bit, read/write register that enables interrupts from the compare registers. At system reset or power-on reset, this register is cleared to 00h.

7		3	2	1	0
	Reserved		RTCIEN3	RTCIEN2	RTCIEN1
RTCIEN1	The RTC Interrupt Enable 1 bit is used to enabl RTCCMP1 register. 0 – Interrupt disabled. 1 – Interrupt enabled.	e an interrupt when a r	match occurs betw	veen the 16-bit pre	escalar and the
RTCIEN2	The RTC Interrupt Enable 2 bit is used to enable RTCCMP2 register. 0 – Interrupt disabled. 1 – Interrupt enabled.	e an interrupt when a r	match occurs betw	veen the 32-bit co	unter and the
RTCIEN3	The RTC Interrupt Enable 3 bit is used to enabl RTCCMP3 register. 0 – Interrupt disabled. 1 – Interrupt enabled.	e an interrupt when a r	match occurs betw	veen the 32-bit co	unter and the

29.4.5 RTC Prescaler Read Register (RTPRD)

The RTPRD register is a 16-bit, read-only register used to read the current value of the 16-bit prescaler. System reset does not affect this register. At power-on reset, this register is cleared to 0000h.

15		0
	RTPRD	

29.4.6 RTC Counter Read Register (RTCRD)

The RTCRD register is a 32-bit, read-only register used to read the current value of the 32-bit counter. System reset does not affect this register. At power-on reset, this register is initialized to 0000 0001h.

15 0 RTCRD

0

0

29.4.7 RTC Counter Load Register (RTCLD)

The RTCLD register is a 32-bit, read/write register used to load a new value into the 32-bit counter. The counter will be loaded on the next rising edge of its input clock (prescaler output). When the RTCLD register is written, the RTURTC bit in the RTUDST register is set. This bit is cleared when the value in the RTCLD register is loaded into the counter. When the RTCLD register is read, it returns the last value that was written to it. At system reset or power-on reset, this register is cleared to 0000 0000h.

15

RTCLD

29.4.8 RTC Compare Register 1 (RTCCMP1)

The RTCCMP register is a 16-bit, read/write register which holds a value compared with the contents of the 16-bit prescaler. When this register is loaded, the RTUCP1 bit in the RTUDST register is set, and the bit remains set until the updated RTCCMP1 register value takes effect. When the contents of the RTCCMP1 register matches the contents of the prescaler, the prescaler will be cleared on the next rising edge of its input clock (divider output), and the RTCEVT1 bit in the RTCEIST register is set. If the RTCIEN1 bit in the RTCIEN register is set, an interrupt is asserted. System reset does not affect this register. At power-on reset, this register is initialized to 7FFFh.

15

RTCCMP1

29.4.9 RTC Compare Register 2 (RTCCMP2)

The RTCCMP2 register is a 32-bit, read/write register which holds a value compared with the contents of the 32-bit counter. When this register is loaded, the RTUCP2 bit in the RTUDST register is set, and the bit remains set until the updated RTCCMP2 register value takes effect. When the contents of the RTCCMP2 register matches the contents of the counter, the RTCEVT2 bit in the RTCEIST register is set. If the RTCIEN2 bit in the RTCIEN register is set, an interrupt is asserted. System reset does not affect this register. At power-on reset, this register is initialized to FFFF FFFFh.

31		0
	RTCCMP2	

29.4.10 RTC Compare Register 3 (RTCCMP3)

The RTCCMP3 register is a 32-bit, read/write register which holds a value compared with the contents of the 32-bit counter. When this register is loaded, the RTUCP3 bit in the RTUDST register is set, and the bit remains set until the updated RTCCMP3 register value takes effect. When the contents of the RTCCMP3 register matches the contents of the counter, the RTCEVT3 bit in the RTCEIST register is set. If the RTCIEN3 bit in the RTCIEN register is set, an interrupt is asserted. System reset does not affect this register. At power-on reset, this register is initialized to FFFF FFFFh.

31

RTCCMP3

0

TIMING AND WATCHDOG MODULE 30

The Timing and Watchdog Module (TWM) generates the clocks and interrupts used for timing periodic functions in the system; it also provides Watchdog protection over software execution.

The TWM is designed to provide flexibility in system design by configuring various clock ratios and by selecting the Watchdog clock source. After setting the TWM configuration, software can lock it for a higher level of protection against erroneous software action. Once the TWM is locked, only reset can release it.

30.1 TWM STRUCTURE

Figure 30-1 is a block diagram showing the internal structure of the Timing and Watchdog module. There are two main sections: the Real-Time Timer (T0) section at the top and the Watchdog section on the bottom.

All counting activities of the module are based on the Slow Clock (SLCLK). A prescaler counter divides this clock to make a slower clock. The prescaler factor is defined by a 3-bit field in the Timer and Watchdog Prescaler register, which selects either 1, 2, 4, 8, 16, or 32 as the divisor. Therefore, the prescaled clock period can be 2, 4, 8, 16, or 32 times the Slow Clock period. The prescaled clock signal is called T0IN.

30.2 TIMER TO OPERATION

Timer T0 is a programmable 16-bit down counter that can be used as the time base for real-time operations such as a periodic audible tick. It can also be used to drive the Watchdog circuit.

The timer starts counting from the value loaded into the TWMT0 register and counts down on each rising edge of TOIN. When the timer reaches zero, it is automatically reloaded from the TWMT0 register and continues counting down from that value. Therefore, the frequency of the timer is: (29)

 $f_{\text{TIMER}} = f_{\text{SLICK}} / (\text{TWTM0} + 1) \text{ x prescaler}$

When an external crystal oscillator is used as the SLCLK source or when the fast clock is divided accordingly, f_{SI CI K} is 32.768 kHz.

The value stored in TWMT0 can range from 0001h to FFFFh.

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

Figure 30-1. Timing and Watchdog Module Block Diagram

When the counter reaches zero, an internal timer signal called TOOUT is set for one TOIN clock cycle. This signal sets the TC bit in the TWMT0 Control and Status Register (T0CSR). It also asserts an interrupt (IRQ70), when enabled by the T0CSR.T0INTE bit. T0OUT is also an input to the MIWU (see Section 17), so an edge-triggered interrupt is also available through this alternative mechanism.

If software loads the TWMT0 register with a new value, the timer uses that value the next time that it reloads the 16-bit timer register (in other words, after reaching zero). Software can restart the timer at any time (on the very next edge of the T0IN clock) by setting the Restart (RST) bit in the T0CSR register. The T0CSR.RST bit is cleared automatically upon restart of the 16-bit timer.

Note: To enter Power Save or Idle mode after setting the T0CSR.RST bit, software must wait for the reset operation to complete before performing the switch.

www.ti.com

30.3 WATCHDOG OPERATION

The Watchdog is an 8-bit down counter that operates on the rising edge of a specified clock source. At reset, the Watchdog is disabled; it does not count and no Watchdog signal is generated. A write to either the Watchdog Count (WDCNT) register or the Watchdog Service Data Match (WDSDM) register starts the counter. The Watchdog counter counts down from the value programmed in the WDCNT register. Once started, only a reset can stop the Watchdog from operating.

The Watchdog can be programmed to use either T0OUT or T0IN as its clock source (the output and input of Timer T0, respectively). The TWCFG.WDCT0I bit selects the clock source.

Software must periodically service the Watchdog. There are two ways to service the Watchdog, the choice depending on the programmed value of the WDSDME bit in the Timer and Watchdog Configuration (TWCFG) register.

If the TWCFG.WDSDME bit is clear, the Watchdog is serviced by writing a value to the WDCNT register. The value written to the register is reloaded into the Watchdog counter. The counter then continues counting down from that value.

If the TWCFG.WDSDME bit is set, the Watchdog is serviced by writing the value 5Ch to the Watchdog Service Data Match (WDSDM) register. This reloads the Watchdog counter with the value previously programmed into the WDCNT register. The counter then continues counting down from that value.

A Watchdog error signal is generated by any of the following events:

- The Watchdog serviced too late.
- The Watchdog serviced too often.
- The WDSDM register is written with a value other than 5Ch when WDSDM type servicing is enabled (TWCFG.WDSDME = 1).

A Watchdog error condition resets the device.

30.3.1 Register Locking

The Timer and Watchdog Configuration (TWCFG) register is used to set the Watchdog configuration. It controls the Watchdog clock source (T0IN or T0OUT), the type of Watchdog servicing (using WDCNT or WDSDM), and the locking state of the TWCFG, TWCPR, TIMER0, T0CSR, and WDCNT registers. A register that is locked cannot be read or written. A write operation is ignored and a read operation returns unpredictable results.

If the TWCFG register is itself locked, it remains locked until the device is reset. Any other locked registers also remain locked until the device is reset. This feature prevents a runaway program from tampering with the programmed Watchdog function.

30.3.2 Power Save Mode Operation

The Timer and Watchdog Module is active in both the Power Save and Idle modes. The clocks and counters continue to operate normally in these modes. The WDSDM register is accessible in the Power Save and Idle modes, but the other TWM registers are accessible only in the Active mode. Therefore, Watchdog servicing must be carried out using the WDSDM register in the Power Save or Idle mode.

In the Halt mode, the entire device is frozen, including the Timer and Watchdog Module. On return to Active mode, operation of the module resumes at the point at which it was stopped.

Note: After a restart or Watchdog service through WDCNT, do not enter Power Save mode for a period equivalent to 5 Slow Clock cycles.

30.4 TWM REGISTERS

The TWM registers controls the operation of the Timing and Watchdog Module. There are six such registers:

Name	Address Description	
TWCFG	FF A000h	Timer and Watchdog Configuration Register
TWCP	FF A004h	Timer and Watchdog Clock Prescaler Register
ТѠМТО	FF A008h	TWM Timer 0 Register
TOCSR	FF A00Ch	TWMT0 Control and Status Register
WDCNT	FF A010h	Watchdog Count Register
WDSDM	FF A014h	Watchdog Service Data Match Register

Table 30-1. TWM Registers

The WDSDM register is accessible in both Active and Power Save mode. The other TWM registers are accessible only in Active mode.

30.4.1 Timer and Watchdog Configuration Register (TWCFG)

The TWCFG register is a byte-wide, read/write register that selects the Watchdog clock input and service method, and also allows the Watchdog registers to be selectively locked. A locked register cannot be read or written; a read operation returns unpredictable values and a write operation is ignored. Once a lock bit is set, it cannot be cleared until the device is reset. At reset, the non-reserved bits of the register are cleared. The register format is shown below.

7	6	5	4	3	2	1	0		
R	eserved	WDSDME	WDCT0I	LWDCNT	LTWMT0	LTWCP	LTWCFG		
LTWCFG	 CFG The Lock TWCFG Register bit controls access to the TWCFG register. When clear, access to the TWCFG register is allowed. When set, the TWCFG register is locked. 0 – TWCFG register unlocked. 1 – TWCFG register locked. 								
LTWCP		NCP register is lo er unlocked.		TWCP register. W	/hen clear, access	to the TWCP reg	jister is allowed.		
LTWMTO	 MT0 The Lock TWMT0 Register bit controls access to the TWMT0 register. When clear, access to the TWMT0 and T0C registers are allowed. When set, the TWMT0 and T0CSR registers are locked. 0 – TWMT0 register unlocked. 1 – TWMT0 register locked. 								
LWDCNT		et, the LDWCNT I gister unlocked.		he LDWCNT regis	ster. When clear, a	ccess to the LDV	VCNT register is		
WDCT0I	The Watchdog Clock from T0IN bit selects the clock source for the Watchdog timer. When clear, the T0OUT signal (the output of Timer T0) is used as the Watchdog clock. When set, the T0IN signal (the prescaled Slow Clock) is used as Watchdog clock. 0 – Watchdog timer is clocked by T0OUT. 1 – Watchdog timer is clocked by T0IN.								
WDSDME	1 – Watchdog timer is clocked by T0IN.								

NSTRUMENTS

ÈXAS

30.4.2 Timer and Watchdog Clock Prescaler Register (TWCP)

The TWCP register is a byte-wide, read/write register that specifies the prescaler value used for dividing the low-frequency clock to generate the T0IN clock. At reset, the nonreserved bits of the register are cleared. The register format is shown below.

7			3	2	0
		Reserved		Μ	IDIV
MDIV		e. This 3-bit field defines the pres allowed 3-bit values and the corre			
	MDIV	Clock Divisor (f _{SCLK} = 32.768 KHz)	T0IN Frequency		
	000	1	32.768 kHz		
	001	2	16.384 kHz		
	010	4	8.192 kHz		
	011	8	4.096 kHz		
	100	16	2.056 kHz		
	101	32	1.024 kHz		
	Other	Reserved	N/A		

30.4.3 TWM Timer 0 Register (TWMT0)

The TWMT0 register is a 16-bit, read/write register that defines the T0OUT interrupt rate. At reset, TWMT0 register is initialized to FFFFh. The register format is shown below.

15	0
	PRESET
PRESET	The Timer T0 Preset field holds the value used to reload Timer T0 on each underflow. Therefore, the frequency of the Timer T0 interrupt is the frequency of T0IN divided by (PRESET+1). The allowed values of PRESET are 0001h through FFFFh.

30.4.4 TWMT0 Control and Status Register (T0CSR)

The T0CSR register is a byte-wide, read/write register that controls Timer T0 and shows its current status. At reset, the non-reserved bits of the register are cleared. The register format is shown below.

7	5	4	3	2	1	0
	Reserved	FRZT0E	WDLTD	TOINTE	TC	RST
RST	The Restart bit is used to reset Ti on the next rising edge of the sele edge of the selected input clock. Y are cleared. 0 – Writing 0 has no effect. 1 – Writing 1 resets Timer T0.	ected input clock.	The RST bit is rese	et automatically by	the hardware on	the same rising
тс	The Terminal Count bit is set by the ToCSR register. It is a read-only be 0 - Timer T0 did not count down 1 - Timer T0 counted down to 0.	oit. Any data writte			s cleared when so	oftware reads the
TOINTE	The Timer T0 Interrupt Enable bit bit is clear, Timer T0 interrupts ar 0 – Timer T0 interrupts disabled. 1 – Timer T0 interrupts enabled.		upt to the CPU eac	ch time the Timer ⊺	Γ0 count reaches	zero. When this
WDLTD	The Watchdog Last Touch Delay Watchdog is in progress (see WD mode. 0 – No data transfer to the Watch 1 – Data transfer to the Watchdog	CNT and WDSDM	1 register description	on). When clear, it		
FRZT0E	The Freeze Timer 0 Enable bit co (stopped) when the Freeze input asserting the Freeze input signal. 0 – Timer T0 unaffected by Freez 1 – Timer T0 stopped in Freeze n	to the TWM is ass After reset, this bi e mode.	erted. If the FRZT			

30.4.5 Watchdog Count Register (WDCNT)

The WDCNT register is a byte-wide, write-only register that holds the value that is loaded into the Watchdog counter each time the Watchdog is serviced. The Watchdog is started by the first write to this register. Each successive write to this register restarts the Watchdog count with the written value. At reset, this register is initialized to 0Fh.

PRESET	

The WDCNT register operates from PCLK Clock, not Slow Clock. Because the rest of the Watchdog service mechanism operates from Slow Clock, there is a small amount of latency between the write to the WDCNT register and the actual service of the Watchdog. Due to this latency it is not recommended to use small PRESET values. In Power Save mode, it is even more important because the latency time (in clock cycles) is even longer than in Active mode. The minimum PRESET value must be large enough to satisfy this latency, which is expressed in this relation:

PRESET > ((Peripheral Bus Clock / Watchdog Clock) x 6) + 2

(30)

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

0

30.4.6 Watchdog Service Data Match Register (WDSDM)

The WSDSM register is a byte-wide, write-only register used for servicing the Watchdog. When this type of servicing is enabled (TWCFG.WDSDME = 1), the Watchdog is serviced by writing the value 5Ch to the WSDSM register. Each such servicing reloads the Watchdog counter with the value previously written to the WDCNT register. Writing any data other than 5Ch triggers a Watchdog error. Writing to the register more than once in one Watchdog clock cycle also triggers a Watchdog error signal. If this type of servicing is disabled (TWCFG.WDSDME = 0), any write to the WSDSM register is ignored.

7

RSTDATA

30.5 WATCHDOG PROGRAMMING PROCEDURE

The highest level of protection against software errors is achieved by programming and then locking the Watchdog registers and using the WDSDM register for servicing. This is the procedure:

- 1. Write the desired values into the TWM Clock Prescaler register (TWCP) and the TWM Timer 0 register (TWMT0) to control the T0IN and T0OUT clock rates. The frequency of T0IN can be programmed to any of six frequencies ranging from $1/32 \times f_{SLCLK}$ to f_{SLCLK} . The frequency of T0OUT is equal to the frequency of T0IN divided by (1+ PRESET), in which PRESET is the value written to the TWMT0 register.
- 2. Configure the Watchdog clock to use either T0IN or T0OUT by setting or clearing the TWCFG.WDCT0I bit.
- 3. Write the initial value into the WDCNT register. This starts operation of the Watchdog and specifies the maximum allowed number of Watchdog clock cycles between service operations. Starting from this point, the Watchdog must be periodically serviced to prevent a device reset.
- 4. Set the T0CSR.RST bit to restart the TWMT0 timer.
- 5. Lock the Watchdog registers and enable the Watchdog Service Data Match Enable function by setting bits 0, 1, 2, 3, and 5 in the TWCFG register.
- 6. Service the Watchdog by periodically writing the value 5Ch to the WDSDM register at an appropriate rate. Servicing must occur at least once per period programmed into the WDCNT register, but no more than once in a single Watchdog input clock cycle.

31 DUAL MULTI-FUNCTION TIMERS

The two Multi-Function Timer modules each contain a pair of 16-bit timer/counters. Each timer/counter unit offers a choice of clock sources for operation and can be configured to operate in any of the following modes:

- Processor-Independent Pulse Width Modulation (PWM) mode, which generates pulses of a specified width and duty cycle, and which also provides a general-purpose timer/counter.
- Dual-Input Capture mode, which measures the elapsed time between occurrences of external events, and which also provides a general-purpose timer/counter.
- Dual Independent Timer mode, which generates system timing signals or counts occurrences of external events.
- Single-Input Capture and Single Timer mode, which provides one external event counter and one system timer.

Each timer unit uses has two I/O ports, called TAn and TBn. (Only TA0 and TB1 are bonded out to pins. TA1 and TB0 are not bonded out to pins, but they remain functional in other respects, for example as interrupt requests.)

31.1 TIMER STRUCTURE

Figure 31-1 is a block diagram showing the internal structure of the MFT. There are two main functional blocks: a Timer/ Counter and Action block and a Clock Source block. The Timer/Counter and Action block contains two separate timer/ counter units, called Timer/Counter 1 and Timer/Counter 2.

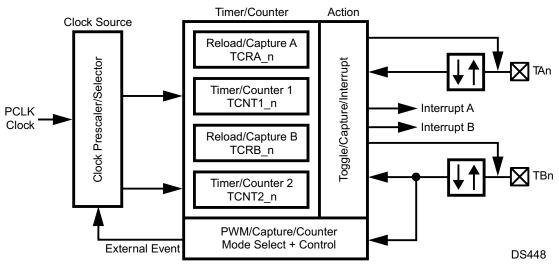


Figure 31-1. Multi-Function Timer Block Diagram

31.1.1 Timer/Counter Block

The Timer/Counter block contains the following functional blocks:

- Two 16-bit counters, Timer/Counter 1 (TCNT1_n) and Timer/Counter 2 (TCNT2_n)
- Two 16-bit reload/capture registers, TCRA_n and TCRB_n
- Control logic necessary to configure the timer to operate in any of the four operating modes
- Interrupt control and I/O control logic

31.1.2 Clock Source Block

The Clock Source block generates the signals used to clock the two timer/counter registers. The internal structure of the Clock Source block is shown in Figure 31-2.

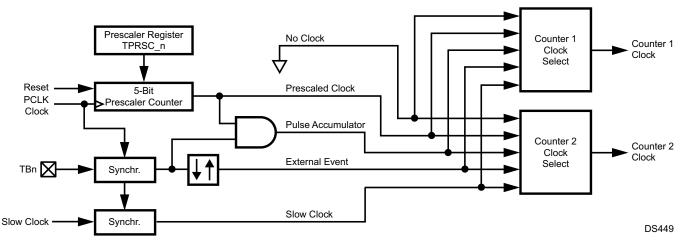


Figure 31-2. Multi-Function Timer Clock Source

Counter Clock Source Select

There are two clock source selectors that allow software to independently select the clock source for each of the two 16-bit counters from any of the following sources:

- No clock (which stops the counter)
- Prescaled PCLK Clock
- External event count based on TBn
- Pulse accumulate mode based on TBn
- Slow Clock

Prescaler

The 5-bit clock prescaler allows software to run the timer with a prescaled clock signal. The prescaler consists of a 5- bit read/write prescaler register (TPRSC_n) and a 5-bit down counter. The PCLK Clock is divided by the value contained in the prescaler register plus 1. Therefore, the PCLK Clock frequency can be divided by any value from 1 to 32. The prescaler register and down counter are both cleared upon reset.

External Event Clock

The TBn pin can be configured to operate as an external event input clock for either of the two 16-bit counters. This input can be programmed to detect either rising or falling edges. The minimum pulse width of the external signal is one PCLK Clock cycle. This means that the maximum frequency at which the counter can run in this mode is one-half of the PCLK Clock frequency. This clock source is not available in the capture modes (modes 2 and 4) because the TBn pin is used as one of the two capture inputs.

Pulse Accumulate Mode

The counter can also be configured to count prescaler output clock pulses when the TBn input is high and not count when the TBn input is low, as illustrated in Figure 31-3. The resulting count is an indicator of the cumulative time that the TBn input is high. This is called the "pulse-accumulate" mode. In this mode, an AND gate generates a clock signal for the counter whenever a prescaler clock pulse is generated and the TBn input is high. (The polarity of the TBn signal is programmable, so the counter can count when the TBn input is low rather than high.) The pulse-accumulate mode is not available in the capture modes (modes 2 and 4) because the TBn pin is used as one of the two capture inputs.

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

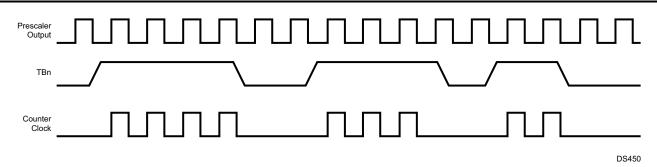


Figure 31-3. Pulse-Accumulate Mode

Slow Clock

Slow Clock can be selected as the clock source for the two 16-bit counters. Because Slow Clock can be asynchronous, it must be synchronized to PCLK Clock, therefore the maximum input frequency of Slow Clock is the PCLK Clock frequency divided by four.

Limitations in Low-Power Modes

The Power Save mode drives Slow Clock onto HCLK Clock. In this mode, Slow Clock cannot be used as a clock source for the timers because it would have the same frequency or a higher frequency than PCLK Clock, and the clock ratio needed for synchronization to PCLK Clock would not be maintained. However, the External Event Clock and Pulse Accumulate Mode will still work, as long as the external event pulses are at least the length of the PCLK Clock period.

Idle and Halt modes stop HCLK Clock and PCLK Clock. If PCLK Clock is stopped, the timer stops counting until PCLK Clock resumes operation.

31.2 TIMER OPERATING MODES

Each timer/counter unit can be configured to operate in the following modes:

- Processor-Independent Pulse Width Modulation (PWM) mode
- Dual-Input Capture mode
- Dual Independent Timer mode
- Single-Input Capture and Single Timer mode

At reset, the timers are disabled. To configure and start the timers, software must write a set of values to the registers that control the timers. The registers are described in Section 31.5.

31.2.1 Mode 1: Processor-Independent PWM

Mode 1 is the Processor-Independent Pulse Width Modulation (PWM) mode, which generates pulses of a specified width and duty cycle, and which also provides a separate general-purpose timer/counter.

Figure 31-4 is a block diagram of the Multi-Function Timer configured to operate in Mode 1. Timer/Counter 1 (TCNT1_n) functions as the time base for the PWM timer. It counts down at the clock rate selected for the counter. When an underflow occurs, the timer register is reloaded alternately from the TCRA_n and TCRB_n registers, and counting proceeds downward from the loaded value.

On the first underflow, the timer is loaded from the TCRA_n register, then from the TCRB_n register on the next underflow, then from the TCRA_n register again on the next underflow, and so on. Every time the counter is stopped and restarted, it always obtains its first reload value from the TCRA_n register. This is true whether the timer is restarted upon reset, after entering Mode 1 from another mode, or after stopping and restarting the clock with the Timer/Counter 1 clock selector.

The timer can be configured to toggle the TAn output bit on each underflow. This generates a clock signal on the TAn output with the width and duty cycle determined by the values stored in the TCRA_n and TCRB_n registers. This is a "processor-independent" PWM clock because once the timer is set up, no more action is required from the CPU to generate a continuous PWM signal.

The timer can be configured to generate separate interrupts upon reload from the TCRA_n and TCRB_n registers. The interrupts can be enabled or disabled under software control. The CPU can determine the cause of each interrupt by looking at the TAPND and TBPND bits, which are updated by the hardware on each occurrence of a timer reload.

In Mode 1, Timer/Counter 2 (TCNT2_n) can be used either as a simple system timer, an external event counter, or a pulse-accumulate counter. The clock counts down using the clock selected with the Timer/Counter 2 clock selector. It asserts an interrupt upon each underflow if the interrupt is enabled with the TDIEN bit.

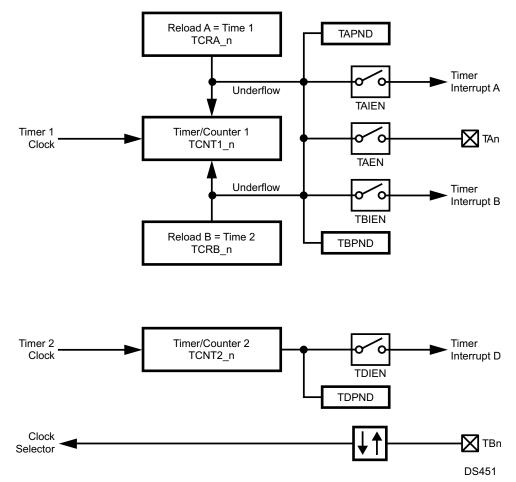


Figure 31-4. Processor-Independent PWM Mode

31.2.2 Mode 2: Dual Input Capture

Mode 2 is the Dual Input Capture mode, which measures the elapsed time between occurrences of external events, and which also provides a separate general-purpose timer/ counter.

Figure 31-5 is a block diagram of the Multi-Function Timer configured to operate in Mode 2. The time base of the capture timer depends on Timer/Counter 1, which counts down using the clock selected with the Timer/Counter 1 clock selector. The TAn and TBn pins function as capture inputs. A transition received on the TAn pin transfers the timer contents to the TCRA_n register. Similarly, a transition received on the TBn pin transfers the timer contents to the TCRB_n register. Each input pin can be configured to sense either rising or falling edges.

The TAn and TBn inputs can be configured to preset the counter to FFFFh on reception of a valid capture event. In this case, the current value of the counter is transferred to the corresponding capture register and then the counter is preset to FFFFh. Using this approach allows software to determine the on-time and off-time and period of an external signal with a minimum of CPU overhead.

The values captured in the TCRA_n register at different times reflect the elapsed time between transitions on the TAn pin. The same is true for the TCRB_n register and the TBn pin. The input signal on the TAn or TBn pin must have a pulse width equal to or greater than one PCLK Clock cycle.

There are three separate interrupts associated with the capture timer, each with its own enable bit and pending bit. The three interrupt events are reception of a transition on the TAn pin, reception of a transition on the TBn pin, and underflow of the TCNT1_n counter. The enable bits for these events are TAIEN, TBIEN, and TCIEN, respectively.

In Mode 2, Timer/Counter 2 (TCNT2_n) can be used as a simple system timer. The clock counts down using the clock selected with the Timer/Counter 2 clock selector. It asserts an interrupt upon each underflow if the interrupt is enabled with the TDIEN bit.

Neither Timer/Counter 1 (TCNT1_n) nor Timer/Counter 2 (TCNT2_n) can be configured to operate as an external event counter or to operate in the pulse-accumulate mode because the TBn input is used as a capture input. Attempting to select one of these configurations will cause one or both counters to stop.

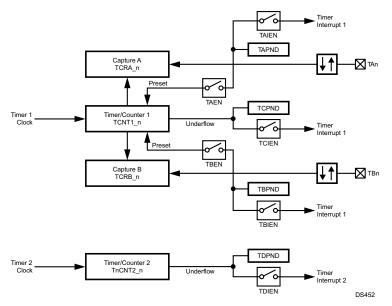


Figure 31-5. Dual-Input Capture Mode

www.ti.com

31.2.3 Mode 3: Dual Independent Timer/Counter

Mode 3 is the Dual Independent Timer mode, which generates system timing signals or counts occurrences of external events.

Figure 31-6 is a block diagram of the Multi-Function Timer configured to operate in Mode 3. The timer is configured to operate as a dual independent system timer or dual external event counter. In addition, Timer/Counter 1 can generate a 50% duty cycle PWM signal on the TAn pin. The TBn pin can be used as an external event input or pulse-accumulate input and can be used as the clock source for either Timer/ Counter 1 or Timer/Counter 2. Both counters can also be clocked by the prescaled PCLK Clock.

Timer/Counter 1 (TCNT1_n) counts down at the rate of the selected clock. On underflow, it is reloaded from the TCRA_n register and counting proceeds down from the reloaded value. In addition, the TAn pin is toggled on each underflow if this function is enabled by the TAEN bit. The initial state of the TAn pin is software-programmable. When the TAn pin is toggled from low to high, it sets the TCPND interrupt pending bit and also asserts an interrupt if enabled by the TAIEN bit.

Because the TAn pin toggles on every underflow, a 50% duty cycle PWM signal can be generated on the TAn pin without any further action from the CPU.

Timer/Counter 2 (TCNT2_n) counts down at the rate of the selected clock. On underflow, it is reloaded from the TCRB_n register and counting proceeds down from the reloaded value. In addition, each underflow sets the TDPND interrupt pending bit and asserts an interrupt if the interrupt is enabled by the TDIEN bit.

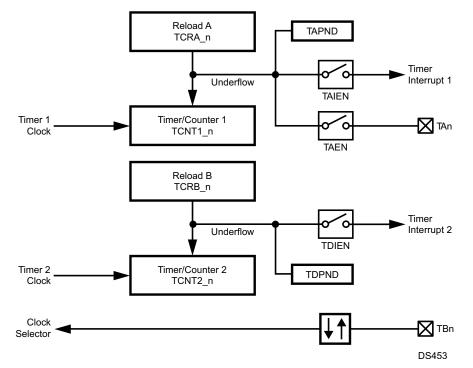


Figure 31-6. Dual-Independent Timer/Counter Mode

31.2.4 Mode 4: Input Capture Plus Timer

Mode 4 is the Single Input Capture and Single Timer mode, which provides one external event counter and one system timer.

Figure 31-7 is a block diagram of the Multi-Function Timer configured to operate in Mode 4. This mode offers a combination of Mode 3 and Mode 2 functions. Timer/Counter 1 is used as a system timer as in Mode 3 and Timer/Counter 2 is used as a capture timer as in Mode 2, but with a single input rather than two inputs.

Timer/Counter 1 (TCNT1_n) operates the same as in Mode 3. It counts down at the rate of the selected clock. On underflow, it is reloaded from the TCRA_n register and counting proceeds down from the reloaded value. The TAn pin is toggled on each underflow, when this function is enabled by the TAEN bit. When the TAn pin is toggled from low to high, it sets the TCPND interrupt pending bit and also asserts an interrupt if the interrupt is enabled by the TAIEN bit. A 50% duty cycle PWM signal can be generated on TAn without any further action from the CPU.

Timer/Counter 2 (TCNT1_n) counts down at the rate of the selected clock. The TBn pin functions as the capture input. A transition received on TBn transfers the timer contents to the TCRB_n register. The input pin can be configured to sense either rising or falling edges.

The TBn input can be configured to preset the counter to FFFFh on reception of a valid capture event. In this case, the current value of the counter is transferred to the capture register and then the counter is preset to FFFFh.

The values captured in the TCRB_n register at different times reflect the elapsed time between transitions on the TBn pin. The input signal on TBn must have a pulse width equal to or greater than one PCLK Clock cycle.

There are two separate interrupts associated with the capture timer, each with its own enable bit and pending bit. The two interrupt events are reception of a transition on TBn and underflow of the TCNT2_n counter. The enable bits for these events are TBIEN and TDIEN, respectively.

Neither Timer/Counter 1 (TCNT1_n) nor Timer/Counter 2 (TCNT2_n) can be configured to operate as an external event counter or to operate in the pulse-accumulate mode because the TBn input is used as a capture input. Attempting to select one of these configurations will cause one or both counters to stop. In this mode, Timer/Counter 2 must be enabled at all times.

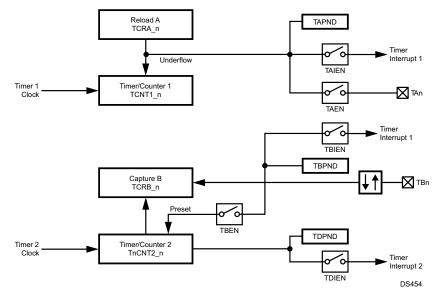


Figure 31-7. Input Capture Plus Timer Mode

31.3 TIMER INTERRUPTS

The Multi-Function Timer unit has four interrupt sources, designated A, B, C, and D. Interrupt sources A, B, and C are mapped into a single system interrupt called Timer Interrupt 1, while interrupt source D is mapped into a system interrupt called Timer Interrupt 2. Each of the four interrupt sources has its own enable bit and pending bit. The enable bits are named TAIEN, TBIEN, TCIEN, and TDIEN. The pending bits are named TAPND, TBPND, TCPND, and TDPND.

Timer Interrupts 1 and 2 are system interrupts TAn and TBn, respectively.

Table 31-1 shows the events that trigger interrupts A, B, C, and D in each of the four operating modes. Note that some interrupt sources are not used in some operating modes.

31.4 TIMER I/O FUNCTIONS

The Multi-Function Timer unit uses two I/O pins, called TAn and TBn. The function of each pin depends on the timer operating mode and the TAEN and TBEN enable bits. Table 31-2 shows the functions of the pins in each operating mode, and for each combination of enable bit settings.

When the TAn pin is configured to operate as a PWM output (TAEN = 1), the state of the pin is toggled on each underflow of the TCNT1_n counter. In this case, the initial value on the pin is determined by the TAOUT bit. For example, to start with TAn high, software must set the TAOUT bit before enabling the timer clock. This option is available only when the timer is configured to operate in Mode 1, 3, or 4 (in other words, when TCRA_n is not used in Capture mode).

Sys. Int.	Interrupt	Mode 1	Mode 2	Mode 3	Mode 4
	Pending Bit	PWM + Counter	Dual Input Capture + Counter	Dual Counter	Single Capture + Counter
Timer Int. 1 (TAn Int.)	TAPND	TCNT1_n reload from TCRA_n	Input capture on TAn transition	TCNT1_n reload from TCRA_n	TCNT1_n reload from TCRA_n
-	TBPND	TCNT1_n reload from TCRB_n	Input Capture on TBn transition	N/A	Input Capture on TBn transition
-	TCPND	N/A	TCNT1_n underflow	N/A	N/A
Timer Int. 2 (TBn Int.)	TDPND	TCNT2_n underflow	TCNT2_n underflow	TCNT2_n reload from TCRB_n	TCNT2_n underflow

Table 31-1. Timer Interrupts Overview

Table 31-2. Timer I/O Functions

I/O	TAEN	Mode 1	Mode 2	Mode 3	Mode 4
	TBEN	PWM + Counter	Dual Input Capture + counter	Dual Counter	Single Capture + counter
ТА	TAEN = 0 TBEN = X	No Output	Capture TCNT1 into TCRA	No Output Toggle	No Output Toggle
	TAEN = 1 TBEN = X	Toggle Output on Underflow of TCNT1	Capture TCNT1 into TCRA and Preset TCNT1	Toggle Output on Underflow of TCNT1	Toggle Output on Underflow of TCNT1
ТВ	TAEN = X TBEN = 0	Ext. Event or Pulse Accumulate Input	Capture TCNT1 into TCRB	Ext. Event or Pulse Accumulate Input	Capture TCNT2 into TCRB
	TAEN = X TBEN = 1	Ext. Event or Pulse Accumulate Input	Capture TCNT1 into TCRB and Preset TCNT1	Ext. Event or Pulse Accumulate Input	Capture TCNT2 into TCRB and Preset TCNT2

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

www.ti.com

31.5 TIMER REGISTERS

Table 31-3 lists the CPU-accessible registers used to control the Multi-Function Timers.

Table 51-5. Multi-1 unction Timer Registers					
Address	Description				
FF 9010h	MFT0 Clock Prescaler Register				
FF 6010h	MFT1 Clock Prescaler Register				
FF 9014h	MFT0 Clock Unit Control Register				
FF 6014h	MFT1 Clock Unit Control Register				
FF 9000h	MFT0 Timer/Counter 1 Register				
FF 6000h	MFT1 Timer/Counter 1 Register				
FF 900Ch	MFT0 Timer/Counter 2 Register				
FF 600Ch	MFT1 Timer/Counter 2 Register				
FF 9004h	MFT0 Reload/Capture A Register				
FF 6004h	MFT1 Reload/Capture A Register				
FF 9008h	MFT0 Reload/Capture B Register				
FF 6008h	MFT1 Reload/Capture B Register				
FF 9018h	MFT0 Timer Mode Control Register				
FF 6018h	MFT1 Timer Mode Control Register				
FF 901Ch	MFT0 Timer Interrupt Control Register				
FF 601Ch	MFT1 Timer Interrupt Control Register				
FF 9020h	MFT0 Timer Interrupt Clear Register				
FF 6020h	MFT1 Timer Interrupt Clear Register				
	Address FF 9010h FF 6010h FF 9014h FF 9014h FF 6014h FF 9000h FF 9000h FF 6000h FF 6000h FF 900Ch FF 600Ch FF 9004h FF 9008h FF 6008h FF 9018h FF 9018h FF 901Ch FF 601Ch FF 9020h				

Table 31-3. Multi-Function Timer Registers

31.5.1 Clock Prescaler Register n (TPRSC_n)

The TPRSC_n register is a byte-wide, read/write register that holds the current value of the 5-bit clock prescaler (CLKPS). This register is cleared on reset. The register format is shown below.

7	5	4	0		
	Reserved		CLKPS		
CLKPS The Clock Prescaler field specifies the divisor used to generate the Timer Clock from PCLK Clock. When the time configured to use the prescaled clock, PCLK Clock is divided by (CLKPS + 1) to produce the timer clock. Therefore					

PCLK Clock divisor can range from 1 to 32.

31.5.2 Clock Unit Control Register n (TCKC_n)

The TCKC_n register is a byte-wide, read/write register that selects the clock source for each timer/counter. Selecting the clock source also starts the counter. This register is cleared on reset, which disables the timer/counters. The register format is shown below.

7	6	5	3	2		0	
	Reserved		C2CSEL		C1CSEL		
C1CSEL	SEL The Counter 1 Clock Select field specifies the clock mode for Timer/Counter 1 as follows: 000 – No clock (Timer/Counter 1 stopped, modes 1, 2, and 3 only). 001 – Prescaled PCLK Clock. 010 – External event on TBn (modes 1 and 3 only). 011 – Pulse-accumulate mode based on TBn (modes 1 and 3 only). 100 – Slow Clock. 101 – Reserved. 110 – Reserved. 111 – Reserved.						
C2CSEL	000 – No clock (001 – Prescaled 010 – External e	Timer/Counter 2 sto PCLK Clock. vent on TBn (mode umulate mode base k.	ecifies the clock mode for Timer/C opped, modes 1, 2, and 3 only). s 1 and 3 only). d on TBn (modes 1 and 3 only).	Counter 2 as follows	:		

111 - Reserved.

31.5.3 Timer/Counter 1 Register n (TCNT1_n)

The TCNT1_n register is a 16-bit, read/write register that holds the current count value for Timer/Counter 1. The register contents are not affected by a reset and are unknown after power-up.

15	0
TCNT1	

31.5.4 Timer/Counter 2 Register n (TCNT2_n)

The TCNT2_n register is a 16-bit, read/write register that holds the current count value for Timer/Counter 2. The register contents are not affected by a reset and are unknown after power-up.

15		0
	TCNT2	

31.5.5 Reload/Capture A Register n (TCRA_n)

The TCRA_n register is a 16-bit, read/write register that holds the reload or capture value for Timer/Counter 1. The register contents are not affected by a reset and are unknown after power-up.

15 0 TCRA

www.ti.com

31.5.6 Reload/Capture B Register n (TCRB_n)

The TCRB_n register is a 16-bit, read/write register that holds the reload or capture value for Timer/Counter 2. The register contents are not affected by a reset and are unknown after power-up.

15		0
	TCRB	

31.5.7 Timer Mode Control Register n (TMCTRL_n)

The TMCTRL_n register is a byte-wide, read/write register that sets the operating mode of the timer/counter and the TAn and TBn pins. This register is cleared at reset. The register format is shown below.

7	6	5	4	3	2	1	0		
TEN	TAOUT	TBEN	TAEN	TBEDG	TAEDG	MDSEL			
MDSEL	The Mode Select field sets the operating mode of the timer/counter as follows: 00 – Mode 1: PWM plus system timer. 01 – Mode 2: Dual-Input Capture plus system timer. 10 – Mode 3: Dual Timer/Counter. 11 – Mode 4: Single-Input Capture and Single Timer.								
TAEDG	The TAn Edge Polarity bit selects the polarity of the edges that trigger the TAn input. 0 – TAn input is sensitive to falling edges (high to low transitions). 1 – TAn input is sensitive to rising edges (low to high transitions).								
TBEDG	The TBn Edge Polarity bit selects the polarity of the edges that trigger the TBn input. In pulse-accumulate mode, when this bit is set, the counter is enabled only when TBn is high; when this bit is clear, the counter is enabled only when TBn is low. 0 – TBn input is sensitive to falling edges (high to low transitions). 1 – TBn input is sensitive to rising edges (low to high transitions).								
TAEN	The TAn Enable bit controls whether the TAn pin is enabled to operate as a preset input or as a PWM output, depending on the timer operating mode. In Mode 2 (Dual Input Capture), a transition on the TAn pin presets the TCNT1_n counter to FFFFh. In the other modes, TAn functions as a PWM output. When this bit is clear, operation of the pin for the timer/counter is disabled. 0 – TAn input disabled. 1 – TAn input enabled.								
TBEN	The TBn Enable bit controls whether the TBn pin in enabled to operate in Mode 2 (Dual Input Capture) or Mode 4 (Single Input Capture and Single Timer). A transition on the TBn pin presets the corresponding timer/counter to FFFFh (TCNT1_n in Mode 2 or TCNT2_n in Mode 4). When this bit is clear, operation of the pin for the timer/counter is disabled. This bit setting has no effect in Mode 1 or Mode 3. 0 – TBn input disabled. 1 – TBn input enabled.								
TAOUT	The TAn Output Data bit indicates the current state of the TAn pin when the pin is used as a PWM output. The hardware sets and clears this bit, but software can also read or write this bit at any time and therefore control the state of the output pin. In case of conflict, a software write has precedence over a hardware update. This bit setting has no effect when the TAn pin is used as an input. 0 - TAn pin is low. 1 - TAn pin is high.								
TEN	counter unit are s TCNT2_n), the c written in this mo input. 0 – Multi-Functio	stopped to minimi apture/ reload reg	ze power consum iisters (TCRA_n a t clock prescaler a d.	ption. For that rea nd TCRB_n), and	bled. When the mo son, the timer/cour the interrupt pendi ending bits are clea	nter registers (T ng bits (TXPND	CNT1_n and) cannot be		

31.5.8 Timer Interrupt Control Register n (TICTL_n)

The TICTL_n register is a byte-wide, read/write register that contains the interrupt enable bits and interrupt pending bits for the four timer interrupt sources, designated A, B, C, and D. The condition that causes each type of interrupt depends on the operating mode, as shown in Table 31-1.

This register is cleared upon reset. The register format is shown below.

7	6	5	4	3	2	1	0	
TDIEN	TCIEN	TBIEN	TAIEN	TDPND	TCPND	TBPND	TAPND	
TAPND	D The Timer Interrupt Source A Pending bit indicates that timer interrupt condition A has occurred. For an explanation of interrupt conditions A, B, C, and D, see Table 31-1. This bit can be set by hardware or by software. To clear this bit, software must use the Timer Interrupt Clear Register (TICLR_n). Attempting to directly write a 0 to this bit is ignored. 0 – Interrupt source A has not triggered. 1 – Interrupt source A has triggered.							
TBPND	The Timer Interrupt Source B Pending bit indicates that timer interrupt condition B has occurred. For an explanation of interrupt conditions A, B, C, and D, see Table 31-1. This bit can be set by hardware or by software. To clear this bit, software must use the Timer Interrupt Clear Register (TICLR_n). Attempting to directly write a 0 to this bit is ignored. 0 – Interrupt source B has not triggered. 1 – Interrupt source B has triggered.							
TCPND	The Timer Interrupt Source C Pending bit indicates that timer interrupt condition C has occurred. For an explanation of interrupt conditions A, B, C, and D, see Table 31-1. This bit can be set by hardware or by software. To clear this bit, software must use the Timer Interrupt Clear Register (TICLR_n). Attempting to directly write a 0 to this bit is ignored. 0 – Interrupt source C has not triggered. 1 – Interrupt source C has triggered.							
TDPND	The Timer Interrupt Source D Pending bit indicates that timer interrupt condition D has occurred. For an explanation of interrupt conditions A, B, C, and D, see Table 31-1. This bit can be set by hardware or by software. To clear this bit, software must use the Timer Interrupt Clear Register (TICLR_n). Attempting to directly write a 0 to this bit is ignored. 0 – Interrupt source D has not triggered. 1 – Interrupt source D has triggered.							
TAIEN	The Timer Interrupt A Enable bit controls whether an interrupt is asserted on each occurrence of interrupt condition A. For an explanation of interrupt conditions A, B, C, and D, see Table 31-1. 0 – Condition A interrupts disabled. 1 – Condition A interrupts enabled.							
TBIEN	The Timer Interrupt B Enable bit controls whether an interrupt is asserted on each occurrence of interrupt condition B. For an explanation of interrupt conditions A, B, C, and D, see Table 31-1. 0 – Condition B interrupts disabled. 1 – Condition B interrupts enabled.						condition B. For	
TCIEN	an explanation o 0 – Condition C i		ns A, B, C, and E	n interrupt is asse), see Table 31-1.	rted on each occu	rrence of interrupt	condition C. For	
TDIEN	an explanation o 0 – Condition D i		ns A, B, C, and E	n interrupt is asse), see Table 31-1.	rted on each occu	rrence of interrupt	condition D. For	

31.5.9 Timer Interrupt Clear Register n (TICLR_n)

The TICLR_n register is a byte-wide, write-only register that allows software to clear the TAPND, TBPND, TCPND, and TDPND bits in the Timer Interrupt Control (TICTL_n) register. Do not modify this register with instructions that access the register as a read-modify-write operand, such as the bit manipulation instructions. The register reads as FFh. The register format is shown below.

7		4	3	2	1	0
	Reserved		TDCLR	TCCLR	TBCLR	TACLR
TACLR	The Timer Pending A Clear bit is us Control register (TICTL). 0 – Writing a 0 has no effect. 1 – Writing a 1 clears the TAPND bi		Fimer Interrupt Sou	Irce A Pending bit	(TAPND) in the T	imer Interrupt
TBCLR	The Timer Pending A Clear bit is us Control register (TICTL). 0 – Writing a 0 has no effect. 1 – Writing a 1 clears the TBPND bi		Γimer Interrupt Soι	Irce B Pending bit	(TBPND) in the T	imer Interrupt
TCCLR	The Timer Pending C Clear bit is us Control register (TICTL_n). 0 – Writing a 0 has no effect. 1 – Writing a 1 clears the TCPND b		Timer Interrupt Sou	urce C Pending bit	(TCPND) in the ⁻	Timer Interrupt
TDCLR	The Timer Pending D Clear bit is us Control register (TICTL_n). 0 – Writing a 0 has no effect. 1 – Writing a 1 clears the TDPND b		Timer Interrupt Sou	urce D Pending bit	(TDPND) in the ⁻	Fimer Interrupt

www.ti.com

32 DUAL VERSATILE TIMER UNITS (VTU)

Each Versatile Timer Unit (VTU) contains four fully independent 16-bit timer subsystems. Each timer subsystem can operate either as dual 8-bit PWM timers, as a single 16-bit PWM timer, or as a 16-bit counter with 2 input capture channels. These timer subsystems offers an 8-bit clock prescaler to accommodate a wide range of system frequencies.

Each of the two VTUs provided on the CP3CN37 offers the following features:

- The VTU can be configured to provide:
 - Eight fully independent 8-bit PWM channels
 - Four fully independent 16-bit PWM channels
 - Eight 16-bit input capture channels
- The VTU consists of four timer subsystems, each of which contains:
 - A 16-bit counter
 - Two 16-bit capture / compare registers
 - An 8-bit fully programmable clock prescaler
- Each of the four timer subsystems can operate in the following modes:
 - Low power mode, that is, all clocks are stopped
 - Dual 8-bit PWM mode
 - 16-bit PWM mode
 - Dual 16-bit input capture mode
- The VTU controls a total of eight I/O pins, each of which can function as either:
 - PWM output with programmable output polarity
 - Capture input with programmable event detection and timer reset
- A flexible interrupt scheme with
 - Four separate system level interrupt requests
 - A total of 16 interrupt sources each with a separate interrupt pending bit and interrupt enable bit

CP3CN37

32.1 VTU FUNCTIONAL DESCRIPTION

Each VTU is comprised of four timer subsystems. Each timer subsystem contains an 8-bit clock prescaler, a 16-bit upcounter, and two 16-bit registers. Each timer subsystem controls two I/O pins which either function as PWM outputs or capture inputs depending on the mode of operation. There are four system-level interrupt requests, one for each timer subsystem. Each system-level interrupt request is controlled by four interrupt pending bits with associated enable/ disable bits. All four timer subsystems are fully independent, and each may operate as a dual 8-bit PWM timer, a 16-bit PWM timer, or as a dual 16-bit capture timer. Figure 32-1 shows the main elements of the VTU.

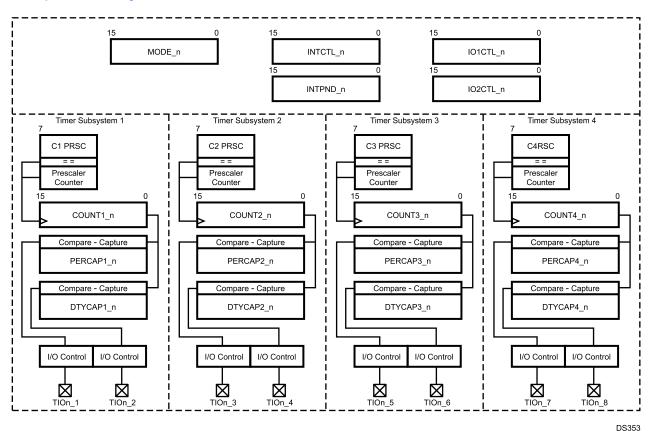
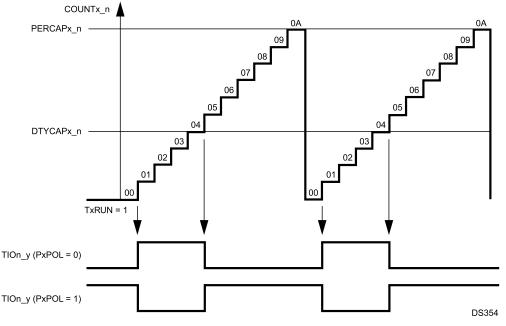


Figure 32-1. Versatile Timer Unit Block Diagram


32.1.1 Dual 8-bit PWM Mode

Each timer subsystem may be configured to generate two fully independent PWM waveforms on the respective TIOx pins. In this mode, the counter $COUNTx_n$ is split and operates as two independent 8-bit counters. (In this section, n is the VTU module number which is either 0 or 1, and x is the VTU subsystem number which may be 1 to 4.) Each counter increments at the rate determined by the clock prescaler.

Each of the two 8-bit counters may be started and stopped separately using the corresponding TxRUN bits. Once either of the two 8-bit timers is running, the clock prescaler starts counting. Once the clock prescaler counter value matches the value of the associated CxPRSC register field, COUNTx_n is incremented.

The period of the PWM output waveform is determined by the value of the PERCAPx_n register. The TIOn_y output starts at the default value as programmed in the IOxCTL_n.PxPOL bit. (In this section, y is the TIOn I/O number, which may be 1 to 8.) Once the counter value reaches the value of the period register PERCAPx_n, the counter is cleared on the next counter increment. On the following increment from 00h to 01h, the TIOn_y output will change to the opposite of the default value.

The duty cycle of the PWM output waveform is controlled by the DTYCAPx_n register value. Once the counter value reaches the value of the duty cycle register DTYCAPx_n, the PWM output TIOn_y changes back to its default value on the next counter increment. Figure 32-2 illustrates this concept.

The period time is determined by the following formula:

 $P_{WM} Period = (PERCAPx_n + 1) \times (CxPRSC + 1) \times T_{CLK}$ (31)

The duty cycle in percent is calculated as follows:

Duty Cycle = (DTYCAPx_n / (PERCAPx_n + 1)) × 100

(32)

If the duty cycle register (DTYCAPx_n) holds a value which is greater than the value held in the period register (PERCAPx_n) the TIOn_y output will remain at the opposite of its default value which corresponds to a duty cycle of 100%. If the duty cycle register (DTYCAPx_n) register holds a value of 00h, the TIOn_y output will remain at the default value which corresponds to a duty cycle of 0%, in which case the value in the PERCAPx_n register is irrelevant. This scheme allows the duty cycle to be programmed in a range from 0% to 100%.

In order to allow fully synchronized updates of the period and duty cycle compare values, the PERCAPx_n and DTYCAPx_n registers are double buffered when operating in PWM mode. Therefore, if software writes to either the period or duty cycle register while either of the two PWM channels is enabled, the new value will not take effect until the counter value matches the previous period value or the timer is stopped.

Reading the PERCAPx_n or DTYCAPx_n register will always return the most recent value written to it.

The counter registers can be written if both 8-bit counters are stopped. This allows software to preset the counters before starting, which can be used to generate PWM output waveforms with a phase shift relative to each other. If the counter is written with a value other than 00h, it will start incrementing from that value. The TIOn_y output will remain at its default value until the first 00h to 01h transition of the counter value occurs. If the counter is preset to values which are less than or equal to the value held in the period register (PERCAPx_n) the counter will count up until a match between the counter value and the PERCAPx_n register value occurs. The counter will then be cleared and continue counting up. Alternatively, the counter may be written with a value which is greater than the value held in the period register. In that case the counter will count up to FFh, then roll over to 00h. In any case, the TIOn_y pin always changes its state at the 00h to 01h transition of the counter.

Software may only write to the COUNTx_n register if both TxRUN bits of a timer subsystem are clear. Any writes to the counter register while either timer is running will be ignored.

The two I/O pins associated with a timer subsystem function are independent PWM outputs in the dual 8bit PWM mode. If a PWM timer is stopped using its associated MODE_n.TxRUN bit the following actions result:

- The associated TIOn_y pin will return to its default value as defined by the IOxCTL_n.PxPOL bit.
- The counter will stop and will retain its last value.
- Any pending updates of the PERCAPx_n and DTYCAPx_n register will be completed.
- The prescaler counter will be stopped and reset if both MODE_n.TxRUN bits are cleared.

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

Figure 32-3 illustrates the configuration of a timer subsystem while operating in dual 8-bit PWM mode. The numbering in Figure 32-3 refers to timer subsystem 1 but equally applies to the other three timer subsystems.

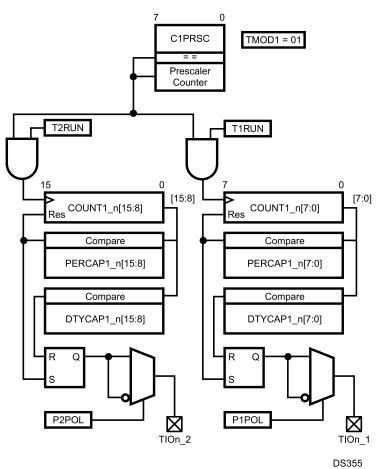


Figure 32-3. VTU Dual 8-Bit PWM Mode

32.1.2 16-Bit PWM Mode

Each of the four timer subsystems may be independently configured to provide a single 16-bit PWM channel. In this case the lower and upper bytes of the counter are concatenated to form a single 16-bit counter.

Operation in 16-bit PWM mode is conceptually identical to the dual 8-bit PWM operation as outlined under Figure 32-3. The 16-bit timer may be started or stopped with the lower MODE_n.TxRUN bit, that is, T1RUN for timer subsystem 1.

The two TIOn_y outputs associated with a timer subsystem can be used to produce either two identical PWM waveforms or two PWM waveforms of opposite polarities. This can be accomplished by setting the two PxPOL bits of the respective timer subsystem to either identical or opposite values.

Figure 32-4 illustrates the configuration of a timer subsystem while operating in 16-bit PWM mode. The numbering in refers to timer subsystem 1 but equally applies to the other three timer subsystems.

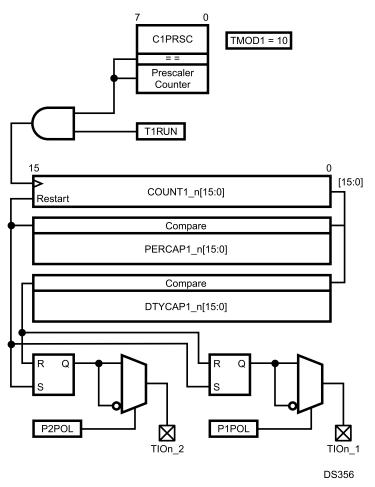


Figure 32-4. VTU 16-Bit PWM Mode

www.ti.com

32.1.3 Dual 16-Bit Capture Mode

In addition to the two PWM modes, each timer subsystem may be configured to operate in an input capture mode which provides two 16-bit capture channels. The input capture mode can be used to precisely measure the period and duty cycle of external signals.

In capture mode the counter COUNTx_n operates as a 16- bit up-counter while the two TIOn_y pins associated with a timer subsystem operate as capture inputs. A capture event on the TIOn_y pins causes the contents of the counter register (COUNTx_n) to be copied to the PERCAPx_n or DTYCAPx_n registers, respectively.

Starting the counter is identical to the 16-bit PWM mode, that is, setting the lower of the two MODE_n.TxRUN bits will start the counter and the clock prescaler. In addition, the capture event inputs are enabled once the MODE_n.TxRUN bit is set.

The TIOn_y capture inputs can be independently configured to detect a capture event on either a positive transition, a negative transition or both a positive and a negative transition. In addition, any capture event may be used to reset the counter COUNTx_n and the clock prescaler counter. This avoids the need for software to keep track of timer overflow conditions and greatly simplifies the direct frequency and duty cycle measurement of an external signal.

Figure 32-5 illustrates the configuration of a timer subsystem while operating in capture mode. The numbering in Figure 32-5 refers to timer subsystem 1 but equally applies to the other three timer subsystems.

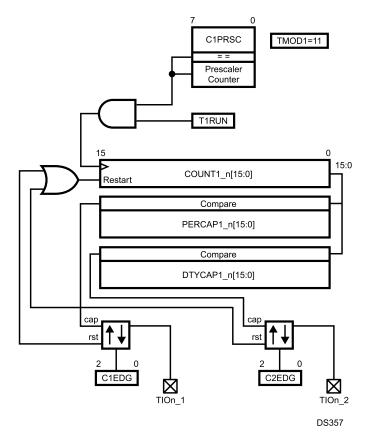


Figure 32-5. VTU Dual 16-bit Capture Mode

32.1.4 Low Power Mode

If a timer subsystem is not used, software can place it in a low-power mode. All clocks to a timer subsystem are stopped and the counter and prescaler contents are frozen once low-power mode is entered. Software may continue to write to the MODE_n, INTCTL_n, IOxCTL_n, and CLKxPS_n registers. Write operations to the INTPND_n register are allowed; but if a timer subsystem is in low-power mode, its associated interrupt pending bits cannot be cleared. Software cannot write to the COUNTx_n, PERCAPx_n, and DTYCAPx_n registers of a timer subsystem while it is in low-power mode. All registers can be read at any time.

32.1.5 Interrupts

Each VTU has a total of 16 interrupt sources, four for each of the four timer subsystems. All interrupt sources have a pending bit and an enable bit associated with them. All interrupt pending bits are denoted IxAPD through IxDPD where "x" relates to the specific timer subsystem. There is one system level interrupt request for each of the four timer subsystems.

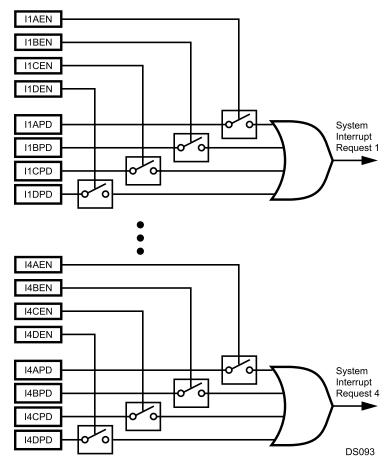


Figure 32-6 illustrates the interrupt structure of the versatile timer module.

Figure 32-6. VTU Interrupt Request Structure

Each of the timer pending bits, IxAPD through IxDPD, is set by a specific hardware event depending on the mode of operation, that is,, PWM or Capture mode. Table 32-1 outlines the specific hardware events relative to the operation mode which cause an interrupt pending bit to be set.

32.1.6 Freeze Mode

If Freeze is mode is entered, all timer counter clocks will be inhibited and the current value of the timer registers will be frozen; in capture mode, all further capture events are disabled. Once Freeze mode is exited, counting will resume from the previous value and the capture input events are reenabled.

Pending Flag	Dual 8-bit PWM Mode	16-bit PWM Mode	Capture Mode
IxAPD	Low Byte Duty Cycle match	Duty Cycle match	Capture to PERCAPx_n
IxBPD	Low Byte Period match	Period match	Capture to DTYCAPx_n
IxCPD	High Byte Duty Cycle match	N/A	Counter Overflow
IxDPD	High Byte Period match	N/A	N/A

Table 32-1. VTU Interrupt Sources

32.2 VTU REGISTERS

Each of the two VTUs has a total of 19 user-accessible registers, as listed in Table 32-2. All registers are word-wide and are initialized to a known value upon reset. All software accesses to the VTU registers must be word accesses.

Name	Address	Description
MODE_0	FF 8800h	Mode Control Register Module 0
MODE_1	FF 8C00h	Mode Control Register Module 1
IO1CTL_0	FF 8804h	I/O Control Register 1Module 0
IO1CTL_1	FF 8C04h	I/O Control Register 1Module 1
IO2CTL_0	FF 8808h	I/O Control Register 2Module 0
IO2CTL_1	FF 8C08h	I/O Control Register 2Module 1
INTCTL_0	FF 880Ch	Interrupt Control Register Module 0
INTCTL_1	FF 8C0Ch	Interrupt Control Register Module 1
INTPND_0	FF 8810h	Interrupt Pending Register Module 0
INTPND_1	FF 8C10h	Interrupt Pending Register Module 1
CLK1PS_0	FF 8814h	Clock Prescaler Register 1 Module 0
CLK1PS_1	FF 8C14h	Clock Prescaler Register 1 Module 1
CLK2PS_0	FF 8830h	Clock Prescaler Register 2 Module 0
CLK2PS_1	FF 8C30h	Clock Prescaler Register 2 Module 1
COUNT1_0	FF 8818h	Counter 1 Register Module 0
COUNT1_1	FF 8C18h	Counter 1 Register Module 1
PERCAP1_0	FF 881Ch	Period/Capture 1 Register Module 0
PERCAP1_1	FF 8C1Ch	Period/Capture 1 Register Module 1
DTYCAP1_0	FF 8820h	Duty Cycle/Capture 1 Register Module 0
DTYCAP1_1	FF 8C20h	Duty Cycle/Capture 1 Register Module 1
COUNT2_0	FF 8824h	Counter 2 Register Module 0
COUNT2_1	FF 8C24h	Counter 2 Register Module 1
PERCAP2_0	FF 8828h	Period/Capture 2 Register Module 0
PERCAP2_1	FF 8C28h	Period/Capture 2 Register Module 1
DTYCAP2_0	FF 882Ch	Duty Cycle/Capture 2 Register Module 0
DTYCAP2_1	FF 8C2Ch	Duty Cycle/Capture 2 Register Module 1
COUNT3_0	FF 8834h	Counter 3 Register Module 0
COUNT3_1	FF 8C34h	Counter 3 Register Module 1
PERCAP3_0	FF 8838h	Period/Capture 3 Register Module 0
PERCAP3_1	FF 8C38h	Period/Capture 3 Register Module 1

Table 32-2. VTU Registers

www.ti.com

Table 32-2. VTU Registers (continued)

DTYCAP3_0	FF 883Ch	Duty Cycle/Capture 3 Register Module 0
DTYCAP3_1	FF 8C3Ch	Duty Cycle/Capture 3 Register Module 1
COUNT4_0	FF 8840h	Counter 4 Register Module 0
COUNT4_1	FF 8C40h	Counter 4 Register Module 1
PERCAP4_0	FF 8844h	Period/Capture 4 Register Module 0
PERCAP4_1	FF 8C44h	Period/Capture 4 Register Module 1
DTYCAP4_0	FF 8848h	Duty Cycle/Capture 4 Register Module 0
DTYCAP4_1	FF 8C48h	Duty Cycle/Capture 4 Register Module 1

32.2.1 Mode Control Register Module n (MODE_n)

The MODE_n registers are 16-bit, read/write registers which control the mode selection of the four timer subsystems in each module. The registers are clear after reset.

T2RUN T1RUN
9 8
T6RUN T5RUN
-

TxRUN The Timer Run bit controls whether the corresponding timer is stopped or running. If set, the associated counter and clock prescaler is started depending on the mode of operation. Once set, the clock to the clock prescaler and the counter are enabled and the counter will increment each time the clock prescaler counter value matches the value defined in the associated clock prescaler field (CxPRSC).

1 - Timer running.

TMODx

The Timer System Operating Mode field enables or disables the Timer Subsystem and defines its operating mode. 00 – Low-Power Mode. All clocks to the counter subsystem are stopped. The counter is stopped regardless of the value of the TxRUN bits. Read operations to the Timer Subsystem will return the last value; software must not perform any write operations to the Timer Subsystem while it is disabled since those will be ignored.

01 – Dual 8-bit PWM mode. Éach 8-bit counter may individually be started or stopped via its associated TxRUN bit. The TIOn_y pins will function as PWM outputs.

10 – 16-bit PWM mode. The two 8-bit counters are concatenated to form a single 16-bit counter. The counter may be started or stopped with the lower of the two TxRUN bits, that is, T1RUN, T3RUN, T5RUN, and T7RUN. The TIOn_y pins will function as PWM outputs.

11 – Capture Mode. Both 8-bit counters are concatenated and operate as a single 16-bit counter. The counter may be started or stopped with the lower of the two TxRUN bits, that is,, T1RUN, T3RUN, T5RUN, and T7RUN. The TIOn_y pins will function as capture inputs.

^{0 -} Timer stopped.

32.2.2 I/O Control Register 1 Module n (IO1CTL_n)

The IO1CTL_n registers are 16-bit, read/write registers. The registers control the I/O pins TIOn_1 through TIOn_4 depending on the selected mode of operation. The registers are clear after reset.

7	6		4	3	2		0
P2POL		C2EDG		P1POL		C1EDG	
15	14		12	11	10		8
P4POL		C4EDG		P3POL		C3EDG	

CxEDG

PxPOL

The Capture Edge Control field specifies the polarity of a capture event and the reset of the counter. The value of this three bit field has no effect while operating in PWM mode.

CxEDG	Capture	Counter Reset
000	Rising edge	No
001	Falling edge	No
010	Rising edge	Yes
011	Falling edge	Yes
100	Both edges	No
101	Both edges	Rising edge
110	Both edges	Falling edge
111	Both edges	Both edges

The PWM Polarity bit selects the output polarity. While operating in PWM mode the bit specifies the polarity of the corresponding PWM output (TIOn_y). Once a counter is stopped, the output will assume the value of PxPOL, that is,, its initial value. The PxPOL bit has no effect while operating in capture mode.

0 – The PWM output goes high at the 00h to 01h transition of the counter and will go low once the counter value matches the duty cycle value.

1 - The PWM output goes low at the 00h to 01h transition of the counter and will go high once the counter value matches the duty cycle value.

32.2.3 I/O Control Register 2 Module n (IO2CTL_n)

The IO2CTL_n registers are 16-bit, read/write registers. The registers control the I/O pins TIOn_5 through TIOn_8 depending on the selected mode of operation. The registers are cleared at reset.

7	6		4	3	2		0
P6POL		C6EDG		P5POL		C5EDG	
15	14		12	11	10		8
P8POL		C8EDG		P7POL		C7EDG	

The functionality of the bit fields of the IO2CTL_n register is identical to the ones described in Section 32.2.2.

STRUMENTS

XAS

32.2.4 Interrupt Control Register Module n (INTCTL_n)

The INTCTL_n registers are 16-bit, read/write registers. They contain the interrupt enable bits for the 16 interrupt sources of each VTU. Each interrupt enable bit corresponds to an interrupt pending bit located in the Interrupt Pending Register (INTPND_n). All INTCTL_n register bits are solely under software control. The registers are clear after reset.

7	6	5	4	3	2	1	0
I2DEN	I2CEN	I2BEN	I2AEN	I1DEN	I1CEN	I1BEN	I1AEN
15	14	13	12	11	10	9	8
I4DEN	I4CEN	I4BEN	I4AEN	13DEN	13CEN	I3BEN	I3AEN
IxAEN	The Timer x Interrupt A Enable bit controls interrupt requests triggered on the corresponding IxAPD bit being set. The associated IxAPD bit will be updated regardless of the value of the IxAEN bit. 0 – Disable system interrupt request for the IxAPD pending bit. 1 – Enable system interrupt request for the IxAPD pending bit.						
IxBEN	The Timer x Interrupt B Enable bit controls interrupt requests triggered on the corresponding IxBPD bit being set. The associated IxBPD bit will be updated regardless of the value of the IxBEN bit. 0 – Disable system interrupt request for the IxBPD pending bit. 1 – Enable system interrupt request for the IxBPD pending bit.						ing set. The
IxCEN	The Timer x Interrupt C Enable bit controls interrupt requests triggered on the corresponding IxCPD bit being set. The associated IxCPD bit will be updated regardless of the value of the IxCEN bit. 0 – Disable system interrupt request for the IxCPD pending bit. 1 – Enable system interrupt request for the IxCPD pending bit.						eing set. The
IxDEN	Timer x Interrupt D Enable bit controls interrupt requests triggered on the corresponding IxDPD bit being set. The associated IxDPD bit will be updated regardless of the value of the IxDEN bit. 0 – Disable system interrupt request for the IxDPD pending bit. 1 – Enable system interrupt request for the IxDPD pending bit.						set. The

32.2.5 Interrupt Pending Register Module n (INTPND_n)

The INTPND_n registers are 16-bit, read/write registers which contain all 16 interrupt pending bits. There are four interrupt pending bits called IxAPD through IxDPD for each timer subsystem. Each interrupt pending bit is set by a hardware event and can be cleared if software writes a 1 to the bit position. The value will remain unchanged if a 0 is written to the bit position. All interrupt pending bits are cleared at reset.

7	6	5	4	3	2	1	0
I2DPD	I2CPD	I2BPD	I2APD	I1DPD	I1CPD	I1BPD	I1APD
15	14	13	12	11	10	9	8
I4DPD	I4CPD	I4BPD	I4APD	I3DPD	I3CPD	I3BPD	I3APD
IxAPD	The Timer x Interrupt A Pending bit indicates that an interrupt condition for the related timer subsystem has occurred. lists the hardware condition which causes this bit to be set. 0 – No interrupt pending. 1 – Timer interrupt condition occurred.						
IxBPD	The Timer x Interrupt B Pending bit indicates that an interrupt condition for the related timer subsystem has occurred. Its the hardware condition which causes this bit to be set. 0 – No interrupt pending. 1 – Timer interrupt condition occurred.						as occurred. lists
IxCPD	The Timer x Interrupt C Pending bit indicates that an interrupt condition for the related timer subsystem has occurred. list the hardware condition which causes this bit to be set. 0 – No interrupt pending. 1 – Timer interrupt condition occurred.						as occurred. lists
IxDPD	The Timer x Interrupt D Pending bit indicates that an interrupt condition for the related timer subsystem has occurred. list the hardware condition which causes this bit to be set. 0 – No interrupt pending. 1 – Timer interrupt condition occurred.						as occurred. lists

32.2.6 Clock Prescaler Register 1 Module n (CLK1PS_n)

The CLK1PS_n registers are 16-bit, read/write registers. The registers are split into two 8-bit fields called C1PRSC and C2PRSC. Each field holds the 8-bit clock prescaler compare value for timer subsystems 1 and 2 respectively. The registers are cleared at reset.

15	8	7	0
	C2PRSC		C1PRSC
C1PRSC	The Clock Prescaler 1 Compare Value field holds th subsystem is incremented each time when the clock counter. The division ratio is equal to (C1PRSC + 1)	c prescaler compar	e value matches the value of the clock prescaler
C2PRSC	The Clock Prescaler 2 Compare Value field holds th subsystem is incremented each time when the clock counter. The division ratio is equal to (C2PRSC + 1)	c prescaler compar	

32.2.7 Clock Prescaler Register 2 Module n (CLK2PS_n)

The CLK2PS_n registers are 16-bit, read/write registers. The registers are split into two 8-bit fields called C3PRSC and C4PRSC. Each field holds the 8-bit clock prescaler compare value for timer subsystems 3 and 4 respectively. The registers are cleared at reset.

15	8	7		0
	C4PRSC		C3PRSC	
C3PRSC	The Clock Prescaler 3 Compare Value field holds th subsystem is incremented each time when the clock counter. The division ratio is equal to (C3PRSC + 1)	prescaler compare		
C4PRSC	The Clock Prescaler 4 Compare Value field holds th subsystem is incremented each time when the clock counter. The division ratio is equal to (C4PRSC + 1)	prescaler compare		

32.2.8 Counter Register x Module n (COUNTx_n)

The COUNTx_n registers are 16-bit, read/write registers. There are four registers in each module, called COUNT1_n through COUNT4_n, one for each of the four timer subsystems. Software may read the registers at any time. Reading the register will return the current value of the counter. The register may only be written if the counter is stopped (that is, if both TxRUN bits associated with a timer subsystem are clear). The registers are cleared at reset.

15		0
	CNTx	

32.2.9 Period/Capture Register x Module n (PERCAPx_n)

The PERCAPx_n registers are 16-bit, read/write registers. There are four registers called PERCAP1_n through PERCAP4_n, one for each timer subsystem. The registers hold the period compare value in PWM mode of the counter value at the time the last associated capture event occurred. In PWM mode the register is double buffered. If a new period compare value is written while the counter is running, the write will not take effect until counter value matches the previous period compare value or until the counter is stopped. Reading may take place at any time and will return the most recent value which was written. The PERCAPx_n registers are cleared at reset.

15

PCAPx

32.2.10 Duty Cycle/Capture Register x Module n (DTYCAPx_n)

The DTYCAPx_n registers are 16-bit, read/write registers. There are four registers called DTYCAP1_n through DTYCAP4_n, one for each timer subsystem. The registers hold the period compare value in PWM mode or the counter value at the time the last associated capture event occurred. In PWM mode, the register is double buffered. If a new duty cycle compare value is written while the counter is running, the write will not take effect until the counter value matches the previous period compare value or until the counter is stopped. The update takes effect on period boundaries only. Reading may take place at any time and will return the most recent value which was written. The DTYCAPx_n registers are cleared at reset.

15

DCAPx

0

0

33 REGISTER MAP

Table 33-1 is a detailed memory map showing the specific memory address of the memory, I/O ports, and registers. The table shows the starting address, the size, and a brief description of each memory block and register. For detailed information on using these memory locations, see the applicable sections in the data sheet.

All addresses not listed in the table are reserved and must not be read or written. An attempt to access an unlisted address will have unpredictable results.

Each byte-wide register occupies a single address and can be accessed only in a byte-wide transaction. Each wordwide register occupies two consecutive memory addresses and can be accessed only in a word-wide transaction. Both the byte-wide and word-wide registers reside at word boundaries (even addresses). Therefore, each byte-wide register uses only the lowest eight bits of the internal data bus.

Most device registers are read/write registers. However, some registers are read-only or write-only, as indicated in the table. An attempt to read a write-only register or to write a read-only register will have unpredictable results.

When software writes to a register in which one or more bits are reserved, it must write a zero to each reserved bit unless indicated otherwise in the description of the register. Reading a reserved bit returns an undefined value.

Register Name	Size	Address	Access	Value After	Comments
	-	USB Node Regis	sters	+	•
FADDR	Byte	FF 0800h	Read/Write	00h	
POWER	Byte	FF 0801h	Read/Write	20h	
INTRTX	Word	FF 0802h	Read-Only	0000h	
INTRRX	Word	FF 0804h	Read-Only	0000h	
INTRTXE	Word	FF 0806h	Read/Write	000Fh	
INTRRXE	Word	FF 0808h	Read/Write	000Eh	
INTRUSB	Byte	FF 080Ah	Read-Only	00h	
INTRUSBE	Byte	FF 080Bh	Read/Write	06h	
FRAME	Word	FF 080Ch	Read-Only	0000h	
INDEX	Byte	FF 080Eh	Read/Write	00h	
INDEXED	8-Word	FF 0810h - FF 081Fh	Read/Write		
EP0FIFO	Dword	FF 0820h	Read/Write		
EP1FIFO	Dword	FF 0824h	Read/Write		
EP2FIFO	Dword	FF 0828h	Read/Write		
EP3FIFO	Dword	FF 082Ch	Read/Write		
DEVCTL	Byte	FF 0860h	Read/Write	00h	
EPONIND	8-Word	FF 0900h - FF 090Fh	Read/Write		
EP1NIND	8-Word	FF 0910h - FF 091Fh	Read/Write		
EP2NIND	8-Word	FF 0920h - FF 092Fh	Read/Write		
EP3NIND	8-Word	FF 0930h - FF 093Fh	Read/Write		
VCTRL	Word	FF 0C00h	Write-Only	0000h	
VSTATUS	Byte	FF 0C02h	Read-Only	00h	

Table 33-1. Detailed Device Mapping

www.ti.com

Table 33-1	. Detailed	Device	Mapping	(continued)
------------	------------	--------	---------	-------------

	CAN Message Buffers								
CMB0_CNSTAT	Word	FF BC00h	Read/Write	xxxxh					
CMB0_TSTP	Word	FF BC04h	Read/Write	xxxxh					
CMB0_DATA3	Word	FF BC08h	Read/Write	xxxxh					
CMB0_DATA2	Word	FF BC0Ch	Read/Write	xxxxh					
CMB0_DATA1	Word	FF BC10h	Read/Write	xxxxh					
CMB0_DATA0	Word	FF BC14h	Read/Write	xxxxh					
CMB0_ID0	Word	FF BC18h	Read/Write	xxxxh					
CMB0_ID1	Word	FF BC1Ch	Read/Write	xxxxh					
CMB1	16- word	FF BC20h - FF BC3Fh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB2	16- word	FF BC40h - FF BC5Fh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB3	16- word	FF BC60h - FF BC7Fh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB4	16- word	FF BC80h - FF BC9Fh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB5	16- word	FF BCA0h - FF BCBFh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB6	16- word	FF BCC0h - FF BCDFh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB7	16- word	FF BCE0h - FF BCFFh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB8	16- word	FF BD00h - FF BD1Fh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB9	16- word	FF B892h - FF BD3Fh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB10	16- word	FF BD40h - FF BD5Fh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB11	16- word	FF BD60h - FF BD7Fh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB12	16- word	FF BD80h - FF BD9Fh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB13	16- word	FF BDA0h - FF BDBFh	Read/Write	xxxxh	Same register layout as C0MB0.				
CMB14	16- word	FF BDC0h - FF BDDFh	Read/Write	xxxxh	Same register layout as C0MB0.				

Texas INSTRUMENTS

www.ti.com

	Table 33-1. Detailed Device Mapping (continued)						
		CAN Registe	ers				
CGCR	Word	FF BE00h	Read/Write	0000h			
CTIM	Word	FF BE04h	Read/Write	0000h			
GMSKX	Word	FF BE08h	Read/Write	0000h			
GMSKB	Word	FF BE0Ch	Read/Write	0000h			
BMSKX	Word	FF BE10h	Read/Write	0000h			
BMSKB	Word	FF BE14h	Read/Write	0000h			
CIEN	Word	FF BE18h	Read/Write	0000h			
CIPND	Word	FF BE1Ch	Read-Only	0000h			
CICLR	Word	FF BE20h	Write-Only	0000h			
CICEN	Word	FF BE24h	Read/Write	0000h			
CSTPND	Word	FF BE28h	Read-Only	0000h			
CANEC	Word	FF BE2Ch	Read-Only	0000h			
CEDIAG	Word	FF BE30h	Read-Only	0000h			
CTMR	Word	FF BE34h	Read-Only	0000h			
		Bus Arbite	r				
MASTGP	Dword	FF F000h	Read/Write	0000 0000h			
ARBALGO	Dword	FF F004h	Read/Write	0000 0001h			
DFTMASK	Dword	FF F008h	Read/Write	0000 0002h			
ARBCFGLK	Dword	FF F00Ch	Read/Write	0000 0000h			
		DMA Control	ler				
ADCA0	Dword	FF 0400h	Read/Write	0000 0000h			
ADRA0	Dword	FF 0404h	Read/Write	0000 0000h			
ADCB0	Dword	FF 0408h	Read/Write	0000 0000h			
ADRB0	Dword	FF 040Ch	Read/Write	0000 0000h			
BLTC0	Dword	FF 0410h	Read/Write	0000 0000h			
BLTR0	Dword	FF 0414h	Read/Write	0000 0000h			
RQTR0	Dword	FF 0418h	Read/Write	0000 0000h			
RQTCNT0	Dword	FF 041Ch	Read/Write	0000 0000h			
DMACNT0	Dword	FF 0420h	Read/Write	000C 0000h			
DMASTAT0	Dword	FF 0424h	Read/Write	0000 0000h			
ADCA1	Dword	FF 0440h	Read/Write	0000 0000h			
ADRA1	Dword	FF 0444h	Read/Write	0000 0000h			
ADCB1	Dword	FF 0448h	Read/Write	0000 0000h			
ADRB1	Dword	FF 044Ch	Read/Write	0000 0000h			
BLTC1	Dword	FF 0450h	Read/Write	0000 0000h			
BLTR1	Dword	FF 0454h	Read/Write	0000 0000h			
RQTR1	Dword	FF 0458h	Read/Write	0000 0000h			
RQTCNT1	Dword	FF 045Ch	Read/Write	0000 0000h			
DMACNT1	Dword	FF 0460h	Read/Write	000C 0000h			
DMASTAT1	Dword	FF 0464h	Read/Write	0000 0000h			
ADCA2	Dword	FF 0480h	Read/Write	0000 0000h			
ADRA2	Dword	FF 0484h	Read/Write	0000 0000h			
ADCB2	Dword	FF 0488h	Read/Write	0000 0000h			
ADRB2	Dword	FF 048Ch	Read/Write	0000 0000h			
BLTC2	Dword	FF 0490h	Read/Write	0000 0000h			
BLTR2	Dword	FF 0494h	Read/Write	0000 0000h			
RQTR2	Dword	FF 0498h	Read/Write	0000 0000h			

_ - -. . . . -1\ - -

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

	Table 33-1. Detailed Device Mapping (continued)						
RQTCNT2	Dword	FF 049Ch	Read/Write	0000 0000h			
DMACNT2	Dword	FF 04A0h	Read/Write	000C 0000h			
DMASTAT2	Dword	FF 04A4h	Read/Write	0000 0000h			
ADCA3	Dword	FF 04C0h	Read/Write	0000 0000h			
ADRA3	Dword	FF 04C4h	Read/Write	0000 0000h			
ADCB3	Dword	FF 04C8h	Read/Write	0000 0000h			
ADRB3	Dword	FF 04CCh	Read/Write	0000 0000h			
BLTC3	Dword	FF 04D0h	Read/Write	0000 0000h			
BLTR3	Dword	FF 04D4h	Read/Write	0000 0000h			
RQTR3	Dword	FF 04D8h	Read/Write	0000 0000h			
RQTCNT3	Dword	FF 04DCh	Read/Write	0000 0000h			
DMACNT3	Dword	FF 04E0h	Read/Write	000C 0000h			
DMASTAT3	Dword	FF 04E4h	Read/Write	0000 0000h			
ADCA4	Dword	FF 0500h	Read/Write	0000 0000h			
ADRA4	Dword	FF 0504h	Read/Write	0000 0000h			
ADCB4	Dword	FF 0508h	Read/Write	0000 0000h			
ADRB4	Dword	FF 050Ch	Read/Write	0000 0000h			
BLTC4	Dword	FF 0510h	Read/Write	0000 0000h			
BLTR4	Dword	FF 0514h	Read/Write	0000 0000h			
RQTR4	Dword	FF 0518h	Read/Write	0000 0000h			
RQTCNT4	Dword	FF 051Ch	Read/Write	0000 0000h			
DMACNT4	Dword	FF 0520h	Read/Write	000C 0000h			
DMASTAT4	Dword	FF 0524h	Read/Write	0000 0000h			
ADCA5	Dword	FF 0540h	Read/Write	0000 0000h			
ADRA5	Dword	FF 0544h	Read/Write	0000 0000h			
ADCB5	Dword	FF 0548h	Read/Write	0000 0000h			
ADRB5	Dword	FF 054Ch	Read/Write	0000 0000h			
BLTC5	Dword	FF 0550h	Read/Write	0000 0000h			
BLTR5	Dword	FF 0554h	Read/Write	0000 0000h			
RQTR5	Dword	FF 0558h	Read/Write	0000 0000h			
RQTCNT5	Dword	FF 055Ch	Read/Write	0000 0000h			
DMACNT5	Dword	FF 0560h	Read/Write	000C 0000h			
DMASTAT5	Dword	FF 0564h	Read/Write	0000 0000h			
ADCA6	Dword	FF 0580h	Read/Write	0000 0000h			
ADRA6	Dword	FF 0584h	Read/Write	0000 0000h			
ADCB6	Dword	FF 0588h	Read/Write	0000 0000h			
ADRB6	Dword	FF 058Ch	Read/Write	0000 0000h			
BLTC6	Dword	FF 0590h	Read/Write	0000 0000h			
BLTR6	Dword	FF 0594h	Read/Write	0000 0000h			
RQTR6	Dword	FF 0598h	Read/Write	0000 0000h			
RQTCNT6	Dword	FF 059Ch	Read/Write	0000 0000h			
DMACNT6	Dword	FF 05A0h	Read/Write	000C 0000h			
DMASTAT6	Dword	FF 05A4h	Read/Write	0000 0000h			
ADCA7	Dword	FF 05C0h	Read/Write	0000 0000h			
ADRA7	Dword	FF 05C4h	Read/Write	0000 0000h			
ADCB7	Dword	FF 05C8h	Read/Write	0000 0000h			
ADRB7	Dword	FF 05CCh	Read/Write	0000 0000h			
BLTC7	Dword	FF 05D0h	Read/Write	0000 0000h			

Table 33-1. Detailed Device Mapping (continued)

Copyright © 2007–2013, Texas Instruments Incorporated

www.ti.com

Table 33-1. Detailed Device Mapping (continued)						
BLTR7	Dword	FF 05D4h	Read/Write	0000 0000h		
RQTR7	Dword	FF 05D8h	Read/Write	0000 0000h		
RQTCNT7	Dword	FF 05DCh	Read/Write	0000 0000h		
DMACNT7	Dword	FF 05E0h	Read/Write	000C 0000h		
DMASTAT7	Dword	FF 05E4h	Read/Write	0000 0000h		
ADCA8	Dword	FF 0600h	Read/Write	0000 0000h		
ADRA8	Dword	FF 0604h	Read/Write	0000 0000h		
ADCB8	Dword	FF 0608h	Read/Write	0000 0000h		
ADRB8	Dword	FF 060Ch	Read/Write	0000 0000h		
BLTC8	Dword	FF 0610h	Read/Write	0000 0000h		
BLTR8	Dword	FF 0614h	Read/Write	0000 0000h		
RQTR8	Dword	FF 0618h	Read/Write	0000 0000h		
RQTCNT8	Dword	FF 061Ch	Read/Write	0000 0000h		
DMACNT8	Dword	FF 0620h	Read/Write	000C 0000h		
DMASTAT8	Dword	FF 0624h	Read/Write	0000 0000h		
ADCA9	Dword	FF 0640h	Read/Write	0000 0000h		
ADRA9	Dword	FF 0644h	Read/Write	0000 0000h		
ADCB9	Dword	FF 0648h	Read/Write	0000 0000h		
ADRB9	Dword	FF 064Ch	Read/Write	0000 0000h		
BLTC9	Dword	FF 0650h	Read/Write	0000 0000h		
BLTR9	Dword	FF 0654h	Read/Write	0000 0000h		
RQTR9	Dword	FF 0658h	Read/Write	0000 0000h		
RQTCNT9	Dword	FF 065Ch	Read/Write	0000 0000h		
DMACNT9	Dword	FF 0660h	Read/Write	000C 0000h		
DMASTAT9	Dword	FF 0664h	Read/Write	0000 0000h		
ADCA10	Dword	FF 0680h	Read/Write	0000 0000h		
ADRA10	Dword	FF 0684h	Read/Write	0000 0000h		
ADCB10	Dword	FF 0688h	Read/Write	0000 0000h		
ADRB10	Dword	FF 068Ch	Read/Write	0000 0000h		
BLTC10	Dword	FF 0690h	Read/Write	0000 0000h		
BLTR10	Dword	FF 0694h	Read/Write	0000 0000h		
RQTR10	Dword	FF 0698h	Read/Write	0000 0000h		
RQTCNT10	Dword	FF 069Ch	Read/Write	0000 0000h		
DMACNT10	Dword	FF 06A0h	Read/Write	000C 0000h		
DMASTAT10	Dword	FF 06A4h	Read/Write	0000 0000h		
ADCA11	Dword	FF 06C0h	Read/Write	0000 0000h		
ADRA11	Dword	FF 06C4h	Read/Write	0000 0000h		
ADCB11	Dword	FF 06C8h	Read/Write	0000 0000h		
ADRB11	Dword	FF 06CCh	Read/Write	0000 0000h		
BLTC11	Dword	FF 06D0h	Read/Write	0000 0000h		
BLTR11	Dword	FF 06D4h	Read/Write	0000 0000h		
RQTR11	Dword	FF 06D8h	Read/Write	0000 0000h		
RQTCNT11	Dword	FF 06DCh	Read/Write	0000 0000h		
DMACNT11	Dword	FF 06E0h	Read/Write	000C 0000h		
DMASTAT11	Dword	FF 06E4h	Read/Write	0000 0000h		
ADCA12	Dword	FF 0700h	Read/Write	0000 0000h		
ADRA12	Dword	FF 0704h	Read/Write	0000 0000h		
ADCB12	Dword	FF 0708h	Read/Write	0000 0000h		

Table 33-1. Detailed Device Mapping (continued)

Copyright © 2007–2013, Texas Instruments Incorporated

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

	Table 33-1. Detailed Device Mapping (continued)							
ADRB12	Dword	FF 070Ch	Read/Write	0000 0000h				
BLTC12	Dword	FF 0710h	Read/Write	0000 0000h				
BLTR12	Dword	FF 0714h	Read/Write	0000 0000h				
RQTR12	Dword	FF 0718h	Read/Write	0000 0000h				
RQTCNT12	Dword	FF 071Ch	Read/Write	0000 0000h				
DMACNT12	Dword	FF 0720h	Read/Write	000C 0000h				
DMASTAT12	Dword	FF 0724h	Read/Write	0000 0000h				
ADCA13	Dword	FF 0740h	Read/Write	0000 0000h				
ADRA13	Dword	FF 0744h	Read/Write	0000 0000h				
ADCB13	Dword	FF 0748h	Read/Write	0000 0000h				
ADRB13	Dword	FF 074Ch	Read/Write	0000 0000h				
BLTC13	Dword	FF 0750h	Read/Write	0000 0000h				
BLTR13	Dword	FF 0754h	Read/Write	0000 0000h				
RQTR13	Dword	FF 0758h	Read/Write	0000 0000h				
RQTCNT13	Dword	FF 075Ch	Read/Write	0000 0000h				
DMACNT13	Dword	FF 0760h	Read/Write	000C 0000h				
DMASTAT13	Dword	FF 0764h	Read/Write	0000 0000h				
ADCA14	Dword	FF 0780h	Read/Write	0000 0000h				
ADRA14	Dword	FF 0784h	Read/Write	0000 0000h				
ADCB14	Dword	FF 0788h	Read/Write	0000 0000h				
ADRB14	Dword	FF 078Ch	Read/Write	0000 0000h				
BLTC14	Dword	FF 0790h	Read/Write	0000 0000h				
BLTR14	Dword	FF 0794h	Read/Write	0000 0000h				
RQTR14	Dword	FF 0798h	Read/Write	0000 0000h				
RQTCNT14	Dword	FF 079Ch	Read/Write	0000 0000h				
DMACNT14	Dword	FF 07A0h	Read/Write	000C 0000h				
DMASTAT14	Dword	FF 07A4h	Read/Write	0000 0000h				
ADCA15	Dword	FF 07C0h	Read/Write	0000 0000h				
ADRA15	Dword	FF 07C4h	Read/Write	0000 0000h				
ADCB15	Dword	FF 07C8h	Read/Write	0000 0000h				
ADRB15	Dword	FF 07CCh	Read/Write	0000 0000h				
BLTC15	Dword	FF 07D0h	Read/Write	0000 0000h				
BLTR15	Dword	FF 07D4h	Read/Write	0000 0000h				
RQTR15	Dword	FF 07D8h	Read/Write	0000 0000h				
RQTCNT15	Dword	FF 07DCh	Read/Write	0000 0000h				
DMACNT15	Dword	FF 07E0h	Read/Write	000C 0000h				
DMASTAT15	Dword	FF 07E4h	Read/Write	0000 0000h				

Γ

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

٦

Texas Instruments

Table 33-1. Detailed Device Mapping (continued)
External Bus Interface Unit

		External Bus Inter	face Unit		
SMCTLR	Dword	FF 00A4h	Read/Write	0000 0000h	
SCSLR0	Dword	FF 0014h	Read/Write	0040 0000h	
SMSKR0	Dword	FF 0054h	Read/Write	0000 0028h	
SCSLR1	Dword	FF 0018h	Read/Write	0080 0000h	
SMSKR1	Dword	FF 0058h	Read/Write	0000 0128h	
SCSLR2	Dword	FF 001Ch	Read/Write	0100 0000h	
SMSKR2	Dword	FF 005Ch	Read/Write	0000 0229h	
SMTMGR_SET0	Dword	FF 0094h	Read/Write	000A 1146h	
SMTMGR_SET1	Dword	FF 0098h	Read/Write	001A 1146h	
SMTMGR_SET2	Dword	FF 009Ch	Read/Write	0022 1146h	
FLASH_TPRDR	Dword	FF 00A0h	Read/Write	0000 00C8h	
		System Configu	iration		
MCFG	Byte	FF F400h	Read/Write	00h	
MSTAT	Byte	FF F404h	Read-Only	ENV1:0 pins	Bit 6 clear on write
SWRESET	Byte	FF F408h	Write-Only	N/A	
SYSCFG	Byte	FF F40Ch	Read/Write	00h	
		CVSD/PCM Converte	er Module 0		
CVSDIN0	Word	FF 4800h	Write-Only	0000h	
CVSDOUT0	Word	FF 4804h	Read-Only	0000h	
PCMIN0	Word	FF 4808h	Write-Only	0000h	
PCMOUT0	Word	FF 480Ch	Read-Only	0000h	
LOGIN0	Byte	FF 4810h	Write-Only	00h	
LOGOUT0	Byte	FF 4814h	Read-Only	00h	
LINEARIN0	Word	FF 4818h	Write-Only	0000h	
LINEAROUT0	Word	FF 481Ch	Read-Only	0000h	
CVCTRL0	Word	FF 4820h	Read/Write	0000h	
CVSTAT0	Word	FF 4824h	Read-Only	8001h	
CVTHRESH0	Word	FF 4840h	Read/Write	0504h	
	1	CVSD/PCM Converte	er Module 1	<u>.</u>	
CVSDIN1	Word	FF 4C00h	Write-Only	0000h	
CVSDOUT1	Word	FF 4C04h	Read-Only	0000h	
PCMIN1	Word	FF 4C08h	Write-Only	0000h	
PCMOUT1	Word	FF 4C0Ch	Read-Only	0000h	
LOGIN1	Byte	FF 4C10h	Write-Only	00h	
LOGOUT1	Byte	FF 4C14h	Read-Only	00h	
LINEARIN1	Word	FF 4C18h	Write-Only	0000h	
LINEAROUT1	Word	FF 4C1Ch	Read-Only	0000h	
CVCTRL1	Word	FF 4C20h	Read/Write	0000h	
CVSTAT1	Word	FF 4C24h	Read-Only	8001h	
CVTHRESH1	Word	FF 4C40h	Read/Write	0504h	

www.ti.com

	Clock Generation and Power Management						
PMMCKCTL	Byte	FF A400h	Read/Write	0001 100Xb			
PMMSTCTL	Byte	FF A404h	Read/Write	00h			
PMMSR	Byte	FF A408h	Read/Write	0000 00XXb			
PMMPRSHC	Word	FF A40Ch	Read/Write	001Fh			
PMMPRSPC	Byte	FF A410h	Read/Write	00h			
PMMPRSSC	Word	FF A414h	Read/Write	02DBh			
PMMPLL1CTL1	Word	FF A420h	Read/Write	0000h			
PMMPLL1CTL2	Word	FF A424h	Read/Write	0000h			
PMMPLL1MDIV	Byte	FF A428h	Read/Write	00h			
PMMPLL1NDIV	Byte	FF A42Ch	Read/Write	00h			
PMMPLL1PDIV	Byte	FF A430h	Read/Write	00h			
PMMPLL1NMOD	Word	FF A434h	Read/Write	0000h			
PMMPLL1STUP	Word	FF A438h	Read/Write	007Fh			
PMMPLL2CTL1	Word	FF A440h	Read/Write	0000h			
PMMPLL2CTL2	Word	FF A444h	Read/Write	0000h			
PMMPLL2MDIV	Byte	FF A448h	Read/Write	00h			
PMMPLL2NDIV	Byte	FF A44Ch	Read/Write	00h			
PMMPLL2PDIV	Byte	FF A450h	Read/Write	00h			
PMMPLL2NMOD	Word	FF A454h	Read/Write	0000h			
PMMPLL2STUP	Word	FF A458h	Read/Write	007Fh			
PMMAUX1CTL	Byte	FF A500h	Read/Write	06h			
PMMAUX1PRSC	Word	FF A504h	Read/Write	00FFh			
PMMAUX2CTL	Byte	FF A510h	Read/Write	06h			
PMMAUX2PRSC	Word	FF A514h	Read/Write	00FFh			
PMMAUX3CTL	Byte	FF A520h	Read/Write	06h			
PMMAUX3PRSC	Word	FF A524h	Read/Write	00FFh			
PMMAUX4CTL	Byte	FF A530h	Read/Write	06h			
PMMAUX4PRSC	Word	FF A534h	Read/Write	00FFh			
PMMAUX5CTL	Byte	FF A540h	Read/Write	06h			
PMMAUX5PRSC	Word	FF A544h	Read/Write	00FFh			
PMMAUX6CTL	Byte	FF A550h	Read/Write	06h			
PMMAUX6PRSC	Word	FF A554h	Read/Write	00FFh			
PMMAUX7CTL	Byte	FF A560h	Read/Write	07h			
PMMAUX7PRSC	Word	FF A564h	Read/Write	0001h			
PMMAUX8CTL	Byte	FF A570h	Read/Write	06h			
PMMAUX8PRSC	Word	FF A574h	Read/Write	00FFh			

TEXAS INSTRUMENTS

www.ti.com

Multi-Input Wake-Up							
WKRPND1	Dword	FF C020h	Read/Set	0000 0000h			
WKRPND2	Dword	FF C024h	Read/Set	0000 0000h			
WKFPND1	Dword	FF C030h	Read/Set	0000 0000h			
WKFPND2	Dword	FF C034h	Read/Set	0000 0000h			
WKCLR1	Dword	FF C040h	Write-Only	N/A			
WKCLR2	Dword	FF C044h	Write-Only	N/A			
WKREN1	Dword	FF C000h	Read/Write	0000 0000h			
WKREN2	Dword	FF C004h	Read/Write	0000 0000h			
WKFEN1	Dword	FF C010h	Read/Write	0000 0000h			
WKFEN2	Dword	FF C014h	Read/Write	0000 0000h			
WKRIEN1	Dword	FF C050h	Read/Write	0000 0000h			
WKRIEN2	Dword	FF C054h	Read/Write	0000 0000h			
WKFIEN1	Dword	FF C060h	Read/Write	0000 0000h			
WKFIEN2	Dword	FF C064h	Read/Write	0000 0000h			
WKICTL1	Dword	FF C070h	Read/Write	0000 0000h			
WKICTL2	Dword	FF C074h	Read/Write	0000 0000h			
WKICTL3	Dword	FF C078h	Read/Write	0000 0000h			
WKICTL4	Dword	FF C07Ch	Read/Write	0000 0000h			
WKISTAT	Dword	FF C090h	Read/Write	0000 0000h			
	2	General-Purpose I	1				
PEDIR	Word	FF C404h	Read/Write	0000h			
PEDIN	Word	FF C408h	Read-Only	XXXXh			
PEDOUT	Word	FF C40Ch	Read/Write	XXXXh			
PEIEN	Word	FF C41Ch	Read/Write	0000h			
PEALT	Word	FF C400h	Read/Write	0000h			
PEALTS	Word	FF C418h	Read/Write	0000h			
PEWPU	Word	FF C410h	Read/Write	0000h			
PEPDR	Word	FF C420h	Read/Write	FFFFh			
PFDIR	Word	FF C804h	Read/Write	0000h			
PFDIN	Word	FF C808h	Read-Only	XXXXh			
PFDOUT	Word	FF C80Ch	Read/Write	XXXXh			
PFIEN	Word	FF C81Ch	Read/Write	0000h			
PFALT	Word	FF C800h	Read/Write	0000h			
PFALTS	Word	FF C818h	Read/Write	0000h			
PFWPU	Word	FF C810h	Read/Write	0000h			
PFPDR	Word	FF C820h	Read/Write	FFFFh			
PGDIR	Word	FF 6404h	Read/Write	0000h			
PGDIN	Word	FF 6408h	Read-Only	XXXXh			
PGDOUT	Word	FF 640Ch	Read/Write	XXXXh			
PGIEN	Word	FF 641Ch	Read/Write	0000h			
PGALT	Word	FF 6400h	Read/Write	0000h			
PGALTS	Word	FF 6418h	Read/Write	0000h			
PGWPU	Word	FF 6410h	Read/Write	0000h			
PGPDR	Word	FF 6420h	Read/Write	FFFFh			
PHDIR	Word	FF CC04h	Read/Write	0000h			
PHDIN	Word	FF CC08h	Read-Only	XXXXh			
	volu	11 00001	Read-Only				

www.ti.com

		Detailed Device	mapping (oontine	aou)	
PHIEN	Word	FF CC1Ch	Read/Write	0000h	
PHALT	Word	FF CC00h	Read/Write	0000h	
PHALTS	Word	FF CC18h	Read/Write	0000h	
PHWPU	Word	FF CC10h	Read/Write	0000h	
PHPDR	Word	FF CC20h	Read/Write	FFFFh	
		Advanced Audio	Interface	•	
ARFR	Word	FF 5000h	Read-Only	0000h	
ARDR0	Word	FF 5004h	Read-Only	0000h	
ARDR1	Word	FF 5008h	Read-Only	0000h	
ARDR2	Word	FF 500Ch	Read-Only	0000h	
ARDR3	Word	FF 5010h	Read-Only	0000h	
ATFR	Word	FF 5014h	Write-Only	XXXXh	
ATDR0	Word	FF 5018h	Write-Only	0000h	
ATDR1	Word	FF 501Ch	Write-Only	0000h	
ATDR2	Word	FF 5020h	Write-Only	0000h	
ATDR3	Word	FF 5024h	Write-Only	0000h	
AGCR	Word	FF 5028h	Read/Write	0000h	
AISCR	Word	FF 502Ch	Read/Write	0000h	
ARSCR	Word	FF 5030h	Read/Write	0000h	Becomes 0004h after enabling clock.
ATSCR	Word	FF 5034h	Read/Write	F000h	Becomes F003h after enabling clock
ACCR	Word	FF 5038h	Read/Write	0000h	
ADMACR	Word	FF 503Ch	Read/Write	0000h	

TEXAS INSTRUMENTS

www.ti.com

		Interrupt Contro	ol Unit		
IVECT	Dword	FF FE00h	Read-Only	0000 0010h	Fixed Addr.
NMISTAT	Dword	FF FE04h	Read-Only	0000 0000h	
EXNMI	Dword	FF FE08h	Read/Write	0000 0000h	
ISTR0	Dword	FF FE10h	Read-Only	0000 0000h	
ISTR1	Dword	FF FE14h	Read-Only	0000 0000h	
ISTR2	Dword	FF FE18h	Read-Only	0000 0000h	
IENR0	Dword	FF FE20h	Read/Write	0000 0000h	
IENR1	Dword	FF FE24h	Read/Write	0000 0000h	
IENR2	Dword	FF FE28h	Read/Write	0000 0000h	
SOFTR0	Dword	FF FE40h	Read/Write	0000 0000h	
SOFTR1	Dword	FF FE44h	Read/Write	0000 0000h	
SOFTR2	Dword	FF FE48h	Read/Write	0000 0000h	
INTGPAR0	Dword	FF FE50h	Read/Write	0000 0000h	
INTGPBR0	Dword	FF FE54h	Read/Write	0000 0000h	
INTGPAR1	Dword	FF FE58h	Read/Write	0000 0000h	
INTGPBR1	Dword	FF FE5Ch	Read/Write	0000 0000h	
INTGPAR2	Dword	FF FE60h	Read/Write	0000 0000h	
INTGPBR2	Dword	FF FE64h	Read/Write	0000 0000h	
IDBG	Dword	FF FEFCh	Read-Only	0000 0000h	
		UART0			- I
U0TBUF	Byte	FF 9400h	Read/Write	XXh	
UORBUF	Byte	FF 9404h	Read-Only	XXh	
U0ICTRL	Byte	FF 9408h	Read/Write	01h	Bits 0:1 read only
UOSTAT	Byte	FF 940Ch	Read-Only	00h	
U0FRS	Byte	FF 9410h	Read/Write	00h	
U0MDSL1	Byte	FF 9414h	Read/Write	00h	
U0BAUD	Byte	FF 9418h	Read/Write	00h	
U0PSR	Byte	FF 941Ch	Read/Write	00h	
U00VR	Byte	FF 9420h	Read/Write	00h	
U0MDSL2	Byte	FF 9424h	Read/Write	00h	
U0SPOS	Byte	FF 9428h	Read/Write	06h	
	-	UART1	1		
U1TBUF	Byte	FF 9800h	Read/Write	XXh	
U1RBUF	Byte	FF 9804h	Read-Only	XXh	
U1ICTRL	Byte	FF 9808h	Read/Write	01h	Bits 0:1 read only
U1STAT	Byte	FF 980Ch	Read-Only	00h	
U1FRS	Byte	FF 9810h	Read/Write	00h	
U1MDSL1	Byte	FF 9814h	Read/Write	00h	
U1BAUD	Byte	FF 9818h	Read/Write	00h	
U1PSR	Byte	FF 981Ch	Read/Write	00h	
U10VR	Byte	FF 9820h	Read/Write	00h	
U1MDSL2	Byte	FF 9824h	Read/Write	00h	
U1SPOS	Byte	FF 9828h	Read/Write	06h	

www.ti.com

		UART2			
U2TBUF	Byte	FF 9C00h	Read/Write	XXh	
U2RBUF	Byte	FF 9C04h	Read-Only	XXh	
U2ICTRL	Byte	FF 9C08h	Read/Write	01h	Bits 0:1 read only
U2STAT	Byte	FF 9C0Ch	Read-Only	00h	Dits 0.1 read only
U2FRS	Byte	FF 9C10h	Read/Write	00h	
U2MDSL1	Byte	FF 9C14h	Read/Write	00h	
U2BAUD	Byte	FF 9C18h	Read/Write	00h	
U2PSR	Byte	FF 9C1Ch	Read/Write	00h	
U20VR	Byte	FF 9C20h	Read/Write	00h	
U2MDSL2	Byte	FF 9C24h	Read/Write	00h	
U2SPOS	-	FF 9C2411	Read/Write	06h	
025P05	Byte	UART3	Read/white	Uon	
	Dute		Deed/Muite	VVI-	
U3TBUF	Byte	FF 5C00h	Read/Write	XXh	
U3RBUF	Byte	FF 5C04h	Read-Only	XXh	D' o t i i
U3ICTRL	Byte	FF 5C08h	Read/Write	01h	Bits 0:1 read only
U3STAT	Byte	FF 5C0Ch	Read-Only	00h	
U3FRS	Byte	FF 5C10h	Read/Write	00h	
U3MDSL1	Byte	FF 5C14h	Read/Write	00h	
U3BAUD	Byte	FF 5C18h	Read/Write	00h	
U3PSR	Byte	FF 5C1Ch	Read/Write	00h	
U3OVR	Byte	FF 5C20h	Read/Write	00h	
U3MDSL2	Byte	FF 5C24h	Read/Write	00h	
U3SPOS	Byte	FF 5C28h	Read/Write	06h	
		Microwire/SPI In			
MWDAT	Word	FF 8400h	Read/Write	XXXXh	
MWCTL1	Word	FF 8404h	Read/Write	0000h	
MWSTAT	Word	FF 8408h	Read-Only	All implemented bi	its are 0
MWCTL2	Word	FF 840Ah	Read/Write	All implemented bi	its are 0
		ACCESS.bu	IS		
ACBSDA	Byte	FF 8000h	Read/Write	XXh	
ACBST	Byte	FF 8004h	Read/Write	00h	
ACBCST	Byte	FF 8008h	Read/Write	00h	
ACBCTL1	Byte	FF 800Ch	Read/Write	00h	
ACBADDR	Byte	FF 8010h	Read/Write	XXh	
ACBCTL2	Byte	FF 8014h	Read/Write	00h	
ACBADDR2	Byte	FF 8018h	Read/Write	XXh	
ACBCTL3	Byte	FF 801Ch	Read/Write	00h	
		Timing and Watchde	og Module		
TWCFG	Byte	FF A000h	Read/Write	00h	
TWCP	Byte	FF A004h	Read/Write	00h	
TWMT0	Word	FF A008h	Read/Write	FFFFh	
TOCSR	Byte	FF A00Ch	Read/Write	00h	
WDCNT	Byte	FF A010h	Write-Only	0Fh	
WDSDM	Byte	FF A014h	Write-Only	5Fh	

www.ti.com

	Table 33-1.	Detailed Device	Mapping (continu	ed)	
		Multi-Function Time	r Module 0		
TCNT1_0	Word	FF 9000h	Read/Write	XXXXh	
TCRA_0	Word	FF 9004h	Read/Write	XXXXh	
TCRB_0	Word	FF 9008h	Read/Write	XXXXh	
TCNT2_0	Word	FF 900Ch	Read/Write	XXXXh	
TPRSC_0	Byte	FF 9010h	Read/Write	00h	
TCKC_0	Byte	FF 9014h	Read/Write	00h	
TMCTRL_0	Byte	FF 9018h	Read/Write	00h	
TICTL_0	Byte	FF 901Ch	Read/Write	00h	
TICLR_0	Byte	FF 9020h	Write-Only	FFh	
		Multi-Function Time	r Module 1	•	
TCNT1_1	Word	FF 6000h	Read/Write	XXXXh	
TCRA_1	Word	FF 6004h	Read/Write	XXXXh	
TCRB_1	Word	FF 6008h	Read/Write	XXXXh	
TCNT2_1	Word	FF 600Ch	Read/Write	XXXXh	
TPRSC_1	Byte	FF 6010h	Read/Write	00h	
TCKC_1	Byte	FF 6014h	Read/Write	00h	
TMCTRL_1	Byte	FF 6018h	Read/Write	00h	
TICTL_1	Byte	FF 601Ch	Read/Write	00h	
TICLR_1	Byte	FF 6020h	Write-Only	FFh	
		Versatile Timer Unit	Module 0		
MODE_0	Word	FF 8800h	Read/Write	0000h	
IO1CTL_0	Word	FF 8804h	Read/Write	0000h	
IO2CTL_0	Word	FF 8808h	Read/Write	0000h	
INTCTL_0	Word	FF 880Ch	Read/Write	0000h	
INTPND_0	Word	FF 8810h	Read/Write	0000h	
CLK1PS_0	Word	FF 8814h	Read/Write	0000h	
COUNT1_0	Word	FF 8818h	Read/Write	0000h	
PERCAP1_0	Word	FF 881Ch	Read/Write	0000h	
DTYCAP1_0	Word	FF 8820h	Read/Write	0000h	
COUNT2_0	Word	FF 8824h	Read/Write	0000h	
PERCAP2_0	Word	FF 8828h	Read/Write	0000h	
DTYCAP2_0	Word	FF 882Ch	Read/Write	0000h	
CLK2PS_0	Word	FF 8830h	Read/Write	0000h	
COUNT3_0	Word	FF 8834h	Read/Write	0000h	
PERCAP3_0	Word	FF 8838h	Read/Write	0000h	
DTYCAP3_0	Word	FF 883Ch	Read/Write	0000h	
COUNT4_0	Word	FF 8840h	Read/Write	0000h	
 PERCAP4_0	Word	FF 8844h	Read/Write	0000h	
DTYCAP4_0	Word	FF 8848h	Read/Write	0000h	

Versatile Timer Unit Module 1 MODE_1 Word FF 8C00h Read/Write 0000h												
INTCTL 1	Word	FF 8C0Ch	Read/Write	0000h								
INTPND_1	Word	FF 8C10h	Read/Write	0000h								
CLK1PS_1	Word	FF 8C14h	Read/Write	0000h								
COUNT1_1	Word	FF 8C18h	Read/Write	0000h								
PERCAP1_1	Word	FF 8C1Ch	Read/Write	0000h								
DTYCAP1_1	Word	FF 8C20h	Read/Write	0000h								
COUNT2_1	Word	FF 8C24h	Read/Write	0000h								
PERCAP2_1	Word	FF 8C28h	Read/Write	0000h								
DTYCAP2_1	Word	FF 8C2Ch	Read/Write	0000h								
CLK2PS 1	Word	FF 8C30h	Read/Write	0000h								
COUNT3 1	Word	FF 8C34h	Read/Write	0000h								
PERCAP3 1	Word	FF 8C38h	Read/Write	0000h								
DTYCAP3_1	Word	FF 8C3Ch	Read/Write	0000h								
COUNT4_1	Word	FF 8C40h	Read/Write	0000h								
PERCAP4_1	Word	FF 8C44h	Read/Write	0000h								
DTYCAP4_1	Word	FF 8C48h	Read/Write	0000h								
		ADC										
ADCGCR	Word	FF AC00h	Read/Write	0000h								
ADCACR	Word	FF AC04h	Read/Write	0000h								
ADCCNTRL	Word	FF AC08h	Read/Write	0000h								
ADCSTART	Word	FF AC0Ch	Write-Only	N/A								
ADCSCDLY	Word	FF AC10h	Read/Write	0000h								
ADCRESLT	Word	FF AC14h	Read-Only	0000h								
		I ² S Interfac	e		I							
I2SCLK	Dword	FF 4000h	Read/Write	0007 0000h								
I2SRXCTL	Dword	FF 4004h	Read/Write	0000 001Ch								
I2STXCTL	Dword	FF 4008h	Read/Write	0000 001Ch								
I2SSTAT	Dword	FF 401Ch	Read/Write	0000 0808h								
I2STXDATALEFT	Dword	FF 400Ch	Write-Only	0000 0000h								
I2STXDATARIGHT	Dword	FF 4010h	Write-Only	0000 0000h								
I2SRXDATALEFT	Dword	FF 4014h	Read-Only	0000 0000h								
I2SRXDATARIGHT	Dword	FF 4018h	Read-Only	0000 0000h								

www.ti.com

		Detailed Device		ucuj	
		Telematics Co	odec		
TCDCBASIC	Word	FF 4400h	Read/Write	0000h	
TCDCDACSTATUS	Word	FF 4404h	Read-Only	1010h	
TCDCADCSTATUS	Word	FF 4408h	Read-Only	1010h	
TCDCDSP	Word	FF 440Ch	Read/Write	0000h	
TCDCADCANA1	Word	FF 4410h	Read/Write	0000h	
TCDCADCANA2	Word	FF 4414h	Read/Write	0000h	
TCDCADC1CLK	Word	FF 4418h	Read/Write	0000h	
TCDCADC2CLK	Word	FF 441Ch	Read/Write	0000h	
TCDCDACCLK	Word	FF 4420h	Read/Write	0000h	
TCDCFIFO	Word	FF 4424h	Read/Write	0000h	
TCDCIRQEN	Word	FF 4428h	Read/Write	0000h	
TCDCIRQPNDCLR	Word	FF 442Ch	Read/Write	0000h	
TCDCCOMPC0	Word	FF 4430h	Read/Write	0000h	
TCDCCOMPC1	Word	FF 4434h	Read/Write	0000h	
TCDCCOMPC2	Word	FF 4438h	Read/Write	0000h	
TCDCDEBUG	Word	FF 443Ch	Read/Write	0000h	
TCDCADC1	Word	FF 4448h	Read-Only	0000h	
TCDCADC2	Word	FF 444Ch	Read-Only	0000h	
TCDCLEFT	Word	FF 4450h	Read/Write	0000h	
TCDCRIGHT	Word	FF 4454h	Read/Write	0000h	
TCDCMONITOR	Word	FF 4458h	Read/Write	0000h	
		Real Time Cl	ock		
RTCCST	Byte	FF A800h	Read/Write	00h	
RTUDST	Byte	FF A804h	Read-Only	00h	
RTCEIST	Byte	FF A8008h	Read/Write	00h	
RTCIEN	Byte	FF A80Ch	Read/Write	00h	
RTPRD	Word	FF A810h	Read-Only	0000h	
RTCRD	Dword	FF A814h	Read-Only	0000 0001h	
RTCLD	Dword	FF A818h	Read/Write	0000 0000h	
RTCCMP1	Word	FF A81Ch	Read/Write	7FFFh	
RTCCMP2	Dword	FF A820h	Read/Write	FFFF FFFFh	
RTCCMP3	Dword	FF A824h	Read/Write	FFFF FFFFh	

34 REGISTER BIT FIELDS

The following tables show the functions of the bit fields of the device registers. For more information on using these registers, see the detailed description of the applicable function elsewhere in this data sheet.

		Та	ble 34-1. U	SB Control	ler, 15 to 8			
USB Controller	15	14	13	12	11	10	9	8
FADDR				Rese	erved			
POWER				Rese	erved			
INTRTX				Rese	erved			
INTRRX				Rese	erved			
INTRTXE				Rese	erved			
INTRRXE				Rese	erved			
INTRUSB				Reserved				VBER
INTRUSBE				Reserved				VBER
FRAME			Reserved				FRAME10:0	
INDEX				Rese	erved			
DEVCTL				Rese	erved			
CSR0				0				FF
TXMAXP			Reserved			N	AX_PAYLOA	2
TXCSR	AS	ISO	MODE	DMAEN	FDT	DMAMD	0)
RXMAXP			Reserved			N	AX_PAYLOA	5
RXCSR	AS	ISO	DMAEN	DN	DMAMD	(D	ICTX
RXCNT		Reserved			EPRX_0	CNT11:0		
VCTRL	DWEN				ADDRESS			
VSTATUS				Rese	erved			

Table 34-2. USB Controller, 7 to 0

USB Controller	7	6	5	4	3	2	1	0		
FADDR	0			Function Addres						
POWER	ISUP	SC	Re	es.	RST	RESU	SUSP	ENSP		
INTRTX		Res	erved			EPTX3:1		EP0		
INTRRX		Res	erved			EPRX3:1		Res.		
INTRTXE		Res	erved			EPTX3:1		EP0		
INTRRXE		Res	erved			EPRX3:1		Res.		
INTRUSB	SESR	DISC	CON	SOF	RST	BABL	RESU	SUSP		
INTRUSBE	SESR	DISC	CON	SOF	RST	RST BABL		SUSP		
FRAME				FRA	ME10:0					
INDEX		Res	erved			EP	? 3:0			
DEVCTL	BD	FSD	LSD	V	BUS	US HM HRQ				
CSR0	SSE	SRP	SDS	SUE	DE	STS	TPR	RPR		
TXMAXP				MAX_F	PAYLOAD					
TXCSR	ICTX	CDAT	STS	SDS	FF	UR	FNE	TPR		
RXMAXP				MAX_F	PAYLOAD					
RXCSR	CDAT	STS	SDS	FF	DE	OR	FF	RPR		
RXCNT				EPRX_	_CNT11:0					
VCTRL		DATA								
VSTATUS		Res	erved		SUSPOTG_ CTRL	SUSP _CTRL	FORCE _SUSP	FORCE _SUSPCTRI		

Copyright © 2007-2013, Texas Instruments Incorporated

www.ti.com

NSTRUMENTS

Texas

			Table 34-3.	. CAN Contr	ol/Status, 1	5 to 8								
CAN Control/ Status	15	14	13	12	11	10	9	8						
CGCR		Rese	erved		EIT	DIAGEN	INTERNAL	LOOP BACK						
CTIM				PSC6:0				SJW1:0						
GMSKB				GM	28:18									
GMSKX				GM	14:0									
BMSKB				BM2	28:18									
BMSKX				BM	14:0									
CIEN	EI EN				IEN14:0									
CIPND	EI PND				IPND14:0									
CICLR	EI CLR				ICLR14:0									
CICEN	EI CEN				ICEN14:0									
CSTPND				Res	erved									
CANEC				RE	C7:0									
CEDIAG	Res.	DRIVE	RIVE MON CRC STUFF TXE EBID5:0											
CTMR				CTM	R15:0									

			Table 34-4	. CAN Contr	ol/Status, 7	to 0						
CAN Control/ Status	7	6	5	4	3	2	1	0				
CGCR	IGN ACK	LO	DDIR	TST PEN	BUFF LOCK	CRX	СТХ	CANEN				
CTIM	SJW1:0		TSEC	G1[3:0]			TSEG2[2:0]					
GMSKB		GM28:18		RTR	IDE		GM17:15					
GMSKX				GM14:0				XRTR				
BMSKB		BM28:18		RTR	IDE		BM17:15					
BMSKX				BM14:0				XRTR				
CIEN				IEN	14:0							
CIPND				IPNE	014:0							
CICLR				ICLF	14:0							
CICEN				ICEN	114:0							
CSTPND		NS2:0		IRQ		IS ⁻	Т3:0					
CANEC		TEC7:0										
CEDIAG		EBID5:0 EFID3:0										
CTMR				CTM	R15:0							

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

					٦	Table 3	34-5. C	AN M	emory	Regis	ters					
CAN Memory Registers	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CMBn.ID1	XI28 ID10	XI27 ID9	XI26 ID8	XI25 ID7	XI24 ID6	XI23 ID5	XI22 ID4	XI21 ID3	XI20 ID2	XI19 ID1	XI18 ID0	SRR RTR	IDE	XI17	XI16	XI15
CMBn.ID0	XI14	XI13	XI12	XI11	XI10	XI9	XI8	XI7	XI6	XI5	XI4	XI3	XI2	XI1	XI0	RTR
CMBn.	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
DATA0	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1	2.7	2.6	2.5	2.4	2.3	2.2	2.1	2.0
CMBn.	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
DATA1	3.7	3.6	3.5	3.4	3.3	3.2	3.1	3	4.7	4.6	4.5	4.4	4.3	4.2	4.1	4.0
CMBn.	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
DATA2	5.7	5.6	5.5	5.4	5.3	5.2	5.1	5	6.7	6.6	6.5	6.4	6.3	6.2	6.1	6.0
CMBn.	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data	Data
DATA3	7.7	7.6	7.5	7.4	7.3	7.2	7.1	7	8.7	8.6	8.5	8.4	8.3	8.2	8.1	8.0
CMBn.	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP	TSTP
TSTP	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CMBn. CNTSTAT	DLC3	DLC2	DLC1	DLC0		Rese	erved		PRI3	PRI2	PRI1	PRI0	ST3	ST2	ST1	ST0

Table 34-6. EBIU Registers

EBIU Registers	15	14	13	12	11 10		9	8	7	6	5	4	3	2	1	0
SCSLRn (low)		Reserved														
SCSLRn (high)		EXT_BASE_ADDRESS31:15														
SMSKRn (low)		Reserved REG_SEL MEM_TYPE MEM_SIZE														
SMSKRn (high)								Rese	erved							
SMTMGR_SETn (low)			T_'	WP			T_\	WR	Т_	AS			T_	RC		
SMTMGR_SETn (high)	Rese	erved	SM	RP	Rese	erved	Р	S	PM		T_F	PRC		T_BTA		
FLASH_TRPDR (low)		Rese	erved							T_F	RPD					
FLASH_TRPDR (high)		Reserved														
SMCTLR (low)	F	Reserve	d	SI	M_DW_	S1	SN	/_DW_	S0			F	Reserve	d		
SMCTLR (high)		Reserved														

CP3CN37

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

Texas Instruments

					Т	able 3	34-7. C	DMAC	Regis	sters						
DMAC Registers	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCAn (low)								ADCA	n15:0							
ADCAn (high)								ADCAr	31:16							
ADRAn (low)								ADRA	n15:0							
ADRAn (high)								ADRAr	31:16							
ADCBn (low)								ADCB	n15:0							
ADCBn (high)								ADCBr	31:16							
ADRBn (low)								ADRB	n15:0							
ADRBn (high)								ADRBr	31:16							
BLTCn (low)			BLTCn15:0 BLTCn31:16													
BLTCn (high)			BLTCn31:16													
BLTRn (low)			BLTCn31:16 BLTRn15:0													
BLTRn (high)								BLTRn	31:16							
RQTRn (low)								RQTR	n15:0							
RQTRn (high)								Rese	rved							
RQTCNTn (low)								RQTCN	Tn15:0							
RQTCNTn (high)								Rese	rved							
DMACNTn (low)	WMOD E	IN	СВ	ADB	IN	CA	ADA	SWR Q	BPC	ОТ	DIR	TCS	ETO	EOV R	ETC	CHE N
DMACNTn (high)		Rese	rved				SRCRC	Q		TOE N		HPI	ROT		PF	BBE
DMASTATn (low)	R	eserveo	ł	то		В	LV		Re	es.	BNE	ERR	VLD	CHA C	OVR	тс
DMASTATn (high)								Rese	rved							

SNOSCW8A – JANUARY 2007–REVISED DECEMBER 2013

					Ta	ble 34	-8. Bu	s Arb	iter Re	egiste	rs					
Bus Arbiter Registers	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MASTGP (low)					Rese	erved					MA	AS4	MA	NS3	MA	AS2
MASTGP (high)								Res	erved							
ARBALGO (low)						Res	erved						GRD	GRC	GRB	GRA
ARBALGO (high)		Reserved														
DFTMAST (low)						Res	erved							DFT	MAST	
DFTMAST (high)								Res	erved							
ARBCFGLK (low)							I	Reserve	d							LOC K
ARBCFGLK (high)								Res	erved							

Table 34-9. System Configuration Registers

System Configuration Registers	7	6	5	4	3	2	1	0
MCFG	Reserved	FREEZE	Rese	erved	ENV1SEL	ENV0SEL	ENV10E	ENV0OE
MSTAT	ISPRST	WDRST		Rese	erved		OENV1	OENV0
SWRESET				Key V	/alues			
SYSCFG	XDPUDIS		Reserved		USBIDDIG- PUEN	USBHCLKDI S	BTHCLKDIS	RFCKEN

Table 34-10. CVSD/PCM Registers

										<u> </u>						
CVSD/PCM Registers	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CVSDINn								CVS	DIN							
CVSDOUTn								CVSE	DOUT							
PCMINn								PCI	MIN							
PCMOUTn								PCM	OUT							
LOGINn		Reserved LOGIN														
LOGOUTn		Reserved LOGOUT														
LINEARINn								LINE	ARIN							
LINEAROUT n								LINEA	ROUT							
CVCTRLn	CVFR	Res.	_	olu- On	PCM CO NV	CV: CO	-	DMA PI	DMA PO	DMA CI	DMA CO	CVS DER RINT	CVS DINT	PCM INT	CLKE N	CVE N
CVSTATn		CVI	NST			CVOL	JTST	•	F	Reserve	d	CVF	CVE	PCM INT	CVNF	CVN E
CVTHRESHn		Rese	erved		С	VOUT_	THRES	н		Rese	erved			CVIN_T	HRESH	

www.ti.com

NSTRUMENTS

Texas

		Table	e 34-11. Clo	ck and PM	IM Registe	rs		
Clock and PMM	7	6	5	4	3	2	1	0
Registers	15	14	13	12	11	10	9	8
PMMCKCTL		Reserved		FCL	KSRC	SCLK	MAIN_ DCOE	POR
PMMSTCTL	DSC	WACK	HCCM	DMC	WBPSM	HALT	IDLE	PSM
PMMSR			Rese	erved			MCLKSTB	SCLKSTB
PMMPRSHC (low)				HPH	CLK7:0			
PMMPRSHC (high)		Res	erved			HPHC	LK11:8	
PMMPRSPC			Rese	erved			DIVE	PCLK
PMMPRSSC (low)				HPS	CLK7:0			
PMMPRSSC (high)	Res	erved			HPSC	LK13:8		
PMMPLLnCTL1 (low)		Reserved		PLL	IPSEL	PLLDCOE	PLI	_EN
PMMPLLnCTL1 (high)				Res	served			
PMMPLLnCTL2 (low)			Reserved			HCCPLL	DPLLC	PCLKSTB
PMMPLLnCTL2 (high)				Res	erved			
PMMPLLnMDIV				Ν	DIV			
PMMPLLnNDIV				Ν	DIV			
PMMPLLnPDIV				Р	DIV			
PMMPLLnNMOD (low)				N	NOD			
PMMPLLnNMOD (high)	NMO	D_DITH			Res	erved		
PMMPLLnSTUP (low)				CLK	CNT7:0			
PMMPLLnSTUP (high)			Rese	erved			CLKC	NT9:8
PMMAUXnCTL			Reserved			AUXC	LKSRC	AUXCLKEN
PMMAUXnPRSC (low)				HPA	CLK7:0			
PMMAUXnPRSC (high)		Res	erved			HPAC	LK11:8	

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

					Tab	ole 34-	12. M		egiste	rs, 31	to 16					
MIWU Registers	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
WKREN1								WKRE	N31:0							
WKREN2								WKRE	N63:32							
WKFEN1								WKFE	N31:0							
WKFEN2								WKFE	N63:32							
WKRPND1								WKRF	PD31:0							
WKRPND2		WKRPD63:32 WKFPD31:0														
WKFPND1		WKFPD31:0														
WKFPND2		WKFPD31:0 WKFPD63:32														
WKCLR1								WKC	L31:0							
WKCLR2								WKCI	63:32							
WKRIEN1								WKRI	EN31:0							
WKRIEN2								WKRIE	N63:32							
WKFIEN1								WKFI	EN31:0							
WKFIEN2								WKFIE	N63:32							
WKICTL1							WKI	NTR15:0) (2-bit fi	elds)						
WKICTL2								WKINT	R31:16							
WKICTL3								WKINT	R47:32							
WKICTL4								WKINT	R63:48							
WKISTAT								Rese	erved							

Table 34-13. MIWU Registers, 15 to 0

MIWU Registers	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WKREN1			1			1		WKRI	EN31:0		1		1			
WKREN2								WKRE	N63:32							
WKFEN1								WKFE	N31:0							
WKFEN2								WKFE	N63:32							
WKRPND1								WKRI	PD31:0							
WKRPND2								WKRF	D63:32							
WKFPND1								WKF	PD31:0							
WKFPND2		WKFPD63:32														
WKCLR1		WKFPD63:32 WKCL31:0														
WKCLR2								WKC	_63:32							
WKRIEN1								WKRI	EN31:0							
WKRIEN2								WKRIE	N63:32							
WKFIEN1								WKFI	EN31:0							
WKFIEN2								WKFIE	N63:32							
WKICTL1							WK	INTR15:) (2-bit fi	elds)						
WKICTL2								WKINT	R31:16							
WKICTL3								WKINT	R47:32							
WKICTL4								WKINT	R63:48							
WKISTAT				Rese	erved							WKIS	TAT7:0			

www.ti.com

NSTRUMENTS

Texas

						Tabl	e 34-1	4. GP	lO Reg	gisters	5					
GPIO Registers	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PxDIR								Px Port	Directio	n						
PxDIN		Px Port Input Data Px Port Output Data														
PxDOUT							P	x Port O	utput Da	ata						
PxALT						F	Px Pins	Alternate	e Functio	on Enab	le					
PxALTS						Px Pir	ns Alteri	nate Fun	ction So	ource Se	election					
PxWPU						Px	Port W	eak Pull	up/Pulld	own Ena	able					
PxPDR						Px I	Port We	ak Pullu	p/Pulldo	wn Dire	ction					
PxIEN							Px	Port Inte	rrupt Er	nable						

Table 34-15. AAI Registers

								-								
AAI Registers	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ARFR				AR	FH							AF	RFL			
ARDR0				AR	DH							AR	DL			
ARDR1				AR	DH							AR	DL			
ARDR2				AR	DH							AR	DL			
ARDR3				AR	DH							AR	DL			
ATFR				AT	FH							AT	FL			
ATDR0				AT	DH							AT	DL			
ATDR1				AT	DH							AT	DL			
ATDR2				AT	DH							AT	DL			
ATDR3				AT	DH							AT	DL			
AGCR	CLK EN	AAI EN	IOM2	IFS	F	SL	CTF	CRF	IEBC	FSS	IEFS	S	CS	LPB	DWL	ASS
AISCR		Res	erved		TX EIC	TX IC	RX EIC	RX IC	TX EIP	TX IP	RX EIP	RX IP	TX EIE	TX IE	RX EIE	RX IE
ARSCR		RXF	WM			RXI	DSA			RX	SA		RXO	RXE	RXF	RXAF
ATSCR		TXF	WM			TXI	DSA			ТХ	SA		TXU	TXF	TXE	TXAE
ACCR				BCI	PRS							FCPRS				CSS
ADMACR	F	Reserve	d	A	0		ACD			Т	ИD			R	MD	

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

				Tal	ole 34-16	. ICU Reg	jisters							
ICU Registers	3116	1512	118	7	6	5	4	3	2	1	0			
IVECT		Reserved					INT	VECT						
NMISTAT					Res	erved					EXT			
EXNMI				Res	erved				ENLCK	PIN	EN			
ISTAT0					IST	31:1					Res.			
ISTAT1						IST63:32								
ISTAT2		Reserved IST70:64												
IENAM0		IENAM31:1												
IENAM1		IENAM31:1 IENAM63:32												
IENAM2		Rese	erved					IENAM70:6	64					
SOFTINT0					SOFT	INT31:1					Res.			
SOFTINT1					S	OFTINT63:	32							
SOFTINT2		Rese	erved				S	OFTINT70	:64					
INTGPAR0					INTG	PA31:1					Res.			
INTGPAR1						NTGPA63:3	32							
INTGPAR2		Rese	erved					INTGPA70:	64					
INTGPBR0					INTG	PB31:1					Res.			
INTGPBR1						NTGPB63:3	32							
INTGPBR2		Rese	erved					INTGPB70:	64					
IDBG	Res.	IRQ\	/ECT				INT	VECT						

Table 34-17. UART Registers

			10010	04 111 074		•		
UART Registers	7	6	5	4	3	2	1	0
UnTBUF				UnT	BUF			
UnRBUF				UR	BUF			
UnICTRL	UEEI	UERI	UETI	UEFCI	UCTS	UDCTS	URBF	UTBE
UnSTAT	Reserved	UXMIP	URB9	UBKD	UERR	UDOE	UFE	UPE
UnFRS	Reserved	UPEN	UP	SEL	UXB9	USTP	UCI	HAR
UnMDSL1	URTS	UFCE	UERD	UETD	UCKS	UBRK	UATN	UMOD
UnBAUD				UDI	V7:0			
UnPSR			UPSC				UDIV10:8	
UnOVR		Rese	erved			UO	VSR	
UnMDSL2				Reserved				USMD
UnSPOS		Rese	erved			USA	AMP	

Table 34-18. Microwire/SPI Registers

							0					
Microwire/ SPI Registers	15 9	8	7	6	5	4	3	2	1	0		
MWDAT		MWDAT										
MWCTL1	SCDV	SCIDL SCM EIW EIR EIO ECHO MOD MNS										
MWCTL2				Rese	erved				EDW	EDR		
MWSTAT				Reserved				OVR	RBF	BSY		

www.ti.com

STRUMENTS

ÈXAS

			Tabl	e 34-19. ACI	3 Registers					
ACB Registers	7	6	5	4	3	2	1	0		
ACBSDA				DA	ТА					
ACBST	SLVSTP	SDAST	BER	NEGACK	STASTR	NMATCH	MASTER	XMIT		
ACBCST	ARPMATCH	MATCHAF	TGSCL	TSDA	GMATCH	MATCH	BB	BUSY		
ACBCTL1	STASTRE	NMINTE	GCMEN	ACK	DMAEN	INTEN	STOP	START		
ACBADDR	SAEN				ADDR					
ACBCTL2				SCLFRQ6:0				ENABLE		
ACBADDR2	SAEN				ADDR					
ACBCTL3		Reserved ARPEN SCLFRQ8:7								

Table 34-20. ADC Registers

									<u> </u>							
ADC Registers	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCGCR	MUX- OUTE N	INTE N	NREF	_CFG	PREF							DIFF	ADCI N	CLKE N		
ADCACR	CNVT	TRG	PRM			Reserved CLKDIV							(DIV	CLK- SEL		
ADCCNTRL						F	Reserve	d						AUTO	EXT	POL
ADCSTART								Write ar	ny value							
ADCSCDLY	ADC	_DIV				AD	C_DELA	AY1					AD	C_DELA	AY2	
ADCRESLT	ADC_ DON E	ADC_ OFL W	Res.	SIGN	ADC_RESULT											

Table 34-21. TWM Registers

TWM Registers	15 8	7	6	5	4	3	2	1	0									
TWCFG		Reserved		WDSDME	WDCT0I	LWDCNT	LTWMT0	LTWCP	LTWCFG									
TWCP			Rese	erved				MDIV										
TWMT0					PRESET													
TOCSR		Rese	erved		FRZT0E	WDTLD	TOINTE	тс	RST									
WDCNT	Reserved				PRE	SET												
WDSDM	Reserved				RSTI	DATA			RSTDATA									

Table 34-22. MFT16 Registers

MFT16 Registers	15 8	7	6	5	4	3	2	1	0
TCNT1_n					TCNT1				
TCRA_n					TCRA				
TCRB_n					TCRB				
TCNT2_n					TCNT2				
TPRSC_n		Rese	erved				CLKPS		
TCKC_n		Reserved			C2CSEL			C1CSEL	
TMCTRL_n	Reserved	TEN	TAOUT	TBEN	TAEN	TBEDG	TAEDG	TMDSEL	
TICTL_n	Reserved	TDIEN	TCIEN	TBIEN	TAIEN	TDPND	TCPND	TBPND	TAPND
TICLR_n			Reserved			TDCLR	TCCLR	TBCLR	TACLR

Copyright © 2007–2013, Texas Instruments Incorporated

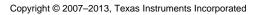
		Tab	ole 34-23. V	TU Registe	ers, 15 to 8					
VTU Registers	15	14	13	12	11	10	9	8		
MODE_n	ТМ	DD4	T8 RUN	T7 RUN		OD3 P3	T6 RUN	T5 RUN		
IO1CTL_n	P4 POL		C4EDG		POL		C3EDG			
IO2CTL_n	P7 POL		C7EDG		P6 POL		C6EDG			
INTCTL_n	I4DEN	I4CEN	I4BEN	I4AEN	I3DEN	I3CEN	I3BEN	I3AEN		
INTPND_n	I4DPD	I4CPD	I4BPD	I4APD	I3DPD	I3CPD	I3BPD	I3APD		
CLK1PS_n				C2P	RSC					
COUNT1_n				CN	NT1					
PERCAP1_n				PC	AP1					
DTYCAP1_n				DC	AP1					
COUNT2_n				CN	NT2					
PERCAP2_n				PC	AP2					
DTYCAP2_n				DC	AP2					
CLK2PS_n				C4P	RSC					
COUNT3_n				CN	NT3					
PERCAP3_n				PC	AP3					
DTYCAP3_n		DCAP3								
COUNT4_n				CN	NT4					
PERCAP4_n				PC	AP4					
DTYCAP4_n				DC	AP4					

Table	34-24.	VTU	Registers,	7 to 0
Table	04 24.		negiotero,	1 10 0

VTU										
Registers	7	6	5	4	3	2	1	0		
MODE_n		DD2 2	T4 RUN	T3 RUN	TM	OD1	T2 RUN	T1 RUN		
IO1CTL_n	POL		C2EDG		P1 POL		C1EDG			
IO2CTL_n	P5 POL		C5EDG		P5 POL		C5EDG			
INTCTL_n	I2DEN	I2CEN	I2BEN	I2AEN	I1DEN	I1CEN I1BEN I1AEN				
INTPND_n	I2DPD	I2CPD	I2BPD	I2APD	I1DPD	I1CPD	I1BPD	I1APD		
CLK1PS_n				C1P	RSC					
COUNT1_n				CN	NT1					
PERCAP1_n				PC	AP1					
DTYCAP1_n				DC	AP1					
COUNT2_n				CN	IT2					
PERCAP2_n				PC	AP2					
DTYCAP2_n				DC	AP2					
CLK2PS_n				C3P	RSC					
COUNT3_n				CN	NT3					
PERCAP3_n				PC	AP3					
DTYCAP3_n		DCAP3								
COUNT4_n				CN	IT4					
PERCAP4_n				PC	AP4					
DTYCAP4_n				DC	AP4					

www.ti.com

CP3CN37


Texas Instruments

www.ti.com

					Та	able 34	4-25. I	²S Reg	gisters	s. 31 to	o 16					
I ² S Registers	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
I2SCLK					F	Reserve	d							WSRES		
I2SRXCTL					F	Reserve	d					RX ST	Res.	RXF	FOTHR	ESH
I2STXCTL				F	Reserve	d				LSB FILL	FLUS H	TXST	Res.	TXFI	FOTHR	ESH
I2STXDATA -								TXDAT	ALEFT							
LEFT																
I2STXDATA -								TXDAT	ARIGHT							
RIGHT																
I2SRXDATA - LEFT								RXDAT	ALEFT							
I2SRXDATA - RIGHT								RXDAT	ARIGHT	-						
I2SSTAT	Res.		ATUS4 3		RX	(STATU	SL		WS	STATU	S2:0		RX	STATU	SR	

Table 34-26. I²S Registers, 15 to 0

									U	,						
l ² S Registers	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I2SCLK				CLF	KDIV					Rese	erved		MS	CLK	SEL	CLKE N
I2SRXCTL	F	RXALIG	N	Res.	RXLD	RXR D	RXLI	RXRI	RXER			RX	RES			RX MOD
I2STXCTL	TXAI	lgn	TX FIFO ENL	TX FIFO ENR	TXLD	TXRD	TXLI	TXRI	TXER			ТХІ	RES			TXM OD
I2STXDATA LEFT								TXDAT	ALEFT							
I2STXDATA RIGHT								TXDAT	ARIGHT							
I2SRXDATA LEFT								RXDAT	ALEFT							
I2SRXDATA RIGHT				RXDATARIGHT												
I2SSTAT	RXER IRQ	RXL IRQ	RXR IRQ		ТХ	STATU	SL		TXER IRQ	TXL IRQ	TXR IRQ		ТХ	STATU	SR	

www.ti.com	

CP3CN37

		Т	able 34-27.	Codec Reg	jisters, 15 to	0 8					
Codec Registers	15	14	13	12	11	10	9	8			
TCDCBASIC	DFS	AFS	FLSDAC	FLSADC	Rese	erved	SEN	MUTER			
TCDCDAC STATUS	DACSTATU S	Rese	erved			RIGHTFIFO					
TCDCADC STATUS	ADC1 STATUS	ADC2 STATUS	Res.			ADC2FIFO					
TCDCDSP	Res.	STCLPR	STCLPL		SIDETO	NEATTEN		CLKPH			
TCDCADCANA1	Res.	Н	PF	MUTE	MICSEL		Reserved				
TCDCADCANA2	Res.	Н	PF	MUTE	MICSEL		Reserved				
TCDCADC1CLK		Rese	erved		CLKTIE		ADCCLKSRC				
TCDCADC2CLK		Rese	erved		CLKTIE		ADCCLKSRC ADCCLKSRC DACCLKSRC IFOTRIG DAC DOWN ADD				
TCDCDACCLK	Rese	erved	SEL6M	DAC	RNG		ADCCLKSRC DACCLKSRC FIFOTRIG				
TCDCFIFO	DMAR	DMAL	DMAADC2	DMAADC1		DACF					
TCDCIRQEN	Rese	erved	STCLP	MICCLP	ZXDR	ZXDL	DAC DOWN	ADC2 DOWN			
TCDCIRQPNDCLR	Rese	erved	STCLP	MICCLP	ZXDR	ZXDL	DAC DOWN	ADC2 DOWN			
TCDCCOMPC0				CON	IPC0						
TCDCCOMPC1				CON	IPC1						
TCDCCOMPC2				CON	IPC2						
TCDCDEBUG				Rese	erved						
TCDCADC1				ADC	DATA						
TCDCADC2				ADC	DATA						
TCDCLEFT				LEFT	DATA						
TCDCRIGHT	RIGHTDATA										
TCDCMONITOR	Res.	SDE		SDLIMIT		MD	DCLI	MIT			

www.ti.com

NSTRUMENTS

Texas

		Table	e 34-28. Co	dec Regis	ters, 7 to 0							
Codec Registers	7	6	5	4	3	2	1	0				
TCDCBASIC	MUTE L	DAC	OSR		DACSTMODE		ADC2 ON	ADC1 ON				
TCDCDAC STATUS		Reserved				LEFTFIFO						
TCDCADC STATUS		Reserved				ADC1FIFO						
TCDCDSP		DIGMICGAIN		CUST COMP	ADC2DIT OFF	ADC1DIT OFF	DACDIT OFF	DACDIT ON				
TCDCADCANA1	Reserved											
TCDCADCANA2	Reserved	MICMODE	Rese	erved		MICO	GAIN					
TCDCADC1CLK				ADCC	LKDIV							
TCDCADC2CLK				ADCC	LKDIV							
TCDCDACCLK				DACC	LKDIV							
TCDCFIFO		ADC2FI	FOTRIG			ADC1FI	FOTRIG					
TCDCIRQEN	ADC1 DOWN	DAC UP	ADC2 UP	ADC1 UP	RGT FIFO	LFT FIFO	ADC2 FIFO	ADC1 FIFO				
TCDCIRQPNDCLR	ADC1 DOWN	DAC UP	ADC2 UP	ADC1 UP	RGT FIFO	LFT FIFO	ADC2 FIFO	ADC1 FIFO				
TCDCCOMPC0				CON	/IPC0							
TCDCCOMPC1				CON	/IPC1							
TCDCCOMPC2				CON	/IPC2							
TCDCDEBUG	SFTRST		Reserved			GF	PIO					
TCDCADC1				ADC	DATA							
TCDCADC2				ADC	DATA							
TCDCLEFT				LEFT	DATA							
TCDCRIGHT				RIGH	TDATA							
TCDCMONITOR				DCLIMIT								

Table 34-29. RTC Registers

RTC Registers	31 16	15 8	7	6	5	4	3	2	1	0
RTCCST			Reserved			RTSTRT	RTPRST		RTDIV	
RTUDST			Reserved			RTUCP3	RTUCP2	RTUCP1	RTURTC	RTUDIV
RTCEIST				Reserved				RTCEVT3	RTCEVT2	RTCEVT1
RTCIEN				Reserved				RTCIEN3	RTCIEN2	RTCIEN1
RTCPRD	Res.					RTPCNT				
RTCRD	RTCCNT									
RTCLD	RTCCLD									
RTCCMP1	Res. RTCCMP1									
RTCCMP2	RTCCMP2									
RTCCMP3					RTC	CMP3				

www.ti.com

35 ELECTRICAL CHARACTERISTICS

35.1 Absolute Maximum Ratings⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
Voltage range	All input and output voltages with respect to GND	-0.2	Supply + 0.2	V
ESD protection level	Human Body Model - (HBM)		2	kV
Signal pin	Allowable sink/source current per signal pin	-10 10		mA
Total current into VRE	GVCC pin	oin 200 m		mA
Total current into IOV	CC pins		200	mA
Total current out of GN	ND pins (sink)		400	mA
Latch-up immunity		-200	200	mA
Temperature range	Temperature under bias	-40	85	°C
	Storage temperature range	-65	150	°C

(1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

(2) Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not ensured when operating the device at absolute maximum ratings.

35.2 DC Electrical Characteristics

(Temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNITS
VREGVcc	On-Chip Voltage Regulator Input		2.7	3.7	V
IOVcc	I/O Supply Voltage		2.97	3.6	V
RFVcc	RF I/O Supply Voltage		2.25	3.6	V
UVcc	USB Supply Voltage		3	3.6	V
TCDACVcc	Codec DAC Voltage		2.97	3.6	V
VREF	ADC Positive Voltage Reference		1.62	1.98	V
V _{IL}	Logical 0 Input Voltage (except as noted below)		-0.2	0.2 IOVcc	V
V _{IH}	Logical 1 Input Voltage (except as noted below)		0.7 IOVcc	IOVcc + 0.2	V
VxI1	X1CKI Logical 0 Input Voltage ⁽¹⁾	External X1 clock	-0.2	0.2 Vcc	V
Vxh1	X1CKI Logical 1 Input Voltage ⁽¹⁾	External X1 clock	0.7 Vcc	Vcc + 0.2	V
VxI2	X2CKI Logical 0 Input Voltage ⁽¹⁾	External X2 clock	-0.2	0.2 Vcc	V
Vxh2	X2CKI Logical 1 Input Voltage ⁽¹⁾	External X2 clock	0.7 Vcc	Vcc + 0.2	V
V _{hys}	Hysteresis Loop Width ⁽¹⁾		0.05 IOVcc		V
l _{OL}	Logical 0 Output Current	$V_{OL} = 0.4V$, IOVcc = 3V	10		mA
	(except as noted below)				
юн	Logical 1 Output Current	$V_{OH} = 2.4V$, IOVcc = 3V	-10		mA
	(except as noted below)				
OLACB	SDA, SCL Logical 0 Output Current	$V_{OL} = 0.4V$, IOVcc = 2.25V	3		mA
OHW	Weak Pullup Current ⁽¹⁾	$V_{IL} = 0V$, IOVcc = 3.6V	-50	-200	μA
L	High Impedance Input Leakage Current ⁽²⁾	0V ≤ Vin ≤ IOVcc	-2	2	μA

(1) Specified by design.

(2) Only for digital inputs. Some analog inputs such as TCMIC1P and TCMIC2P have input protection devices which conduct if the input is taken high.

ISTRUMENTS www.ti.com

EXAS

(Temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNITS			
I _{O(Off)}	Output Leakage Current (I/O pins in input mode)	0V ≤ Vout ≤ IOVcc	-2	2	μA			
lcca1	Digital Supply Current Active Mode ⁽¹⁾	Vcc = 1.98V, IOVcc = 3.63V		200	mA			
Iccps	Digital Supply Current Power Save Mode ⁽²⁾	Vcc = 1.98V, IOVcc = 3.63V		4	mA			
Iccid	Digital Supply Current Idle Mode ⁽³⁾	Vcc = 1.98V, IOVcc = 3.63V		2	mA			
lccq	Digital Supply Current Halt Mode ⁽³⁾⁽⁴⁾	Vcc = 1.98V, IOVcc = 3.63V 20°C		400	μA			

(1)

Run from internal memory (RAM), lout = 0 mA, X1CKI = 12 MHz, both PLLs enabled at 60 MHz. Running from internal memory (RAM), lout = 0 mA, XCKI1 = 12 MHz, PLLs disabled, X2CKI = 32.768. (2)

(2) (3) (4)

lout = 0 mA, XCKI1 = Vcc, X2CKI = 32.768 kHz. Halt current approximately doubles for every 20°C.

35.3 On-Chip Voltage Regulator Electrical Characteristics

(Temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
V _{IN}	Input Voltage		2.7		3.7	V
V _{OD}	Digital Output Voltage		1.62		1.98	V
V _{OA}	Analog Output Voltage		1.62		1.98	V
IQ	Quiescent Current				120	μA
TR	Ramp-Up Time				5	ms
Vo	Output Voltage	I _L = 150 mA, V _{IN} = 3.7V		1.82		V
Vo	Line Output Regulation ⁽¹⁾	$I_L = 1$ to 150 mA, $V_{IN} = 2.7$ to 3.7V		1.8		V
PSRR	Power Supply Rejection Ratio	I _L = 150 mA, VI _N = 3.3V		-45		dB

(1) Line Regulation = 20 mV/mA

35.4 USB Transceiver Electrical Characteristics

(Temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	MAX	UNITS
V _{IL}	USB Input Low Voltage			0.8	V
V _{IH}	USB Input High Voltage (driven)		2.0		V
V _{IHZ}	USB Input High Voltage (floating) ⁽¹⁾		2.7	3.6	V
V _{DI}	Differential Input Sensitivity ⁽¹⁾	(D+) - (D-)	-0.2	0.2	V
V _{CM}	Differential Common Mode Range ⁽¹⁾		0.8	2.5	V
V _{SE}	Single-Ended Receiver Threshold ⁽¹⁾		0.8	2	V
V _{OL}	Output Low Voltage	$RL = 1.5 \text{ k}\Omega \text{ to } 3.6 \text{V}$	0	0.3	V
V _{OH}	Output High Voltage	$RL = 15 k\Omega$ to $0V$	2.8		V
V _{OSE0}	SE0 Voltage ⁽¹⁾			0.8	V
V _{OSE1}	SE1 Voltage ⁽¹⁾		0.8		V
V _{CRS}	Crossover Voltage ⁽¹⁾		1.3	2	V
I _{OZ}	TRI-STATE Data Line Leakage Current ⁽¹⁾	0V < VIN < 3.3V	-10	10	μA
C _{TRN}	Transceiver Capacitance ⁽¹⁾			20	pF
R _{PUI}	Bus Pullup on Upstream Port (idle bus) ⁽¹⁾		0.9	1.575	kΩ
R _{PUA}	Bus Pullup on Upstream Port (port receiving) ⁽¹⁾		1.425	3.09	kΩ
R _{PD}	Bus Pulldown on Downstream Port ⁽¹⁾		14.25	24.8	kΩ
Z _{INP}	Input Impedance Exclusive of Pullup/Pulldown ⁽¹⁾		300		kΩ
V _{TERM}	Termination Voltage ⁽¹⁾		3	3.6	V

www.ti.com

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

35.5 Telematics Codec Electrical Characteristics

(Temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$)

SYMBOL	PARAMETER	TEST CONDITIONS	TYP	MAX	UNITS
		DUAL AUDIO ADC			
	D (1)	Lower (HPF Mode 1), Fs = 8 kHz	300		Hz
VADC _{PB}	Passband ⁽¹⁾	Upper, Fs = 8 kHz	3300		Hz
VADC _{RIP}	Ripple ⁽¹⁾	Same as above, relative to 1 kHz	±0.25		dB
		Above 4.5 kHz	60		dB
VADC _{SBA}	Stopband Attenuation ⁽¹⁾	HPF Notch, 50/60 Hz, HPF = 1 and HPF = 2, worst case	55		dB
VADC _{SNR}	Signal-to-Noise Ratio ⁽¹⁾	1 kHz, -3 dBFS relative to idle noise, Fs = 8 kHz, differential, A-weighted	85		dB
		Same as above, but single-ended	75		dB
VADC _{DR}	Dynamic Range ⁽¹⁾	1 kHz, -60 dB input, AES-17, Fs = 8 kHz, differential, A-weighted	87		dB
VADCLEVEL	Input Level ⁽¹⁾	-3 dBFS, MICGAIN = 0, differential	0.13		V _{RMS}
VADOLEVEL			0.354		V _{P-P} (diff)
VADC _{PSRR}	Power Supply Rejection Ratio ⁽¹⁾	Per application schematic, V_{RIPPLE} = 200 mV_{P-P} , F_{RIPPLE} = 217 Hz, MICGAIN = 0	40		dB
VADC _{THD+N}	Total Harmonic Distortion, ADC + microphone + noise ⁽¹⁾	-3 dB, 1 kHz input, relative to 0 dBFS, differential	0.015		%
VADC _{CM}	Common Mode Voltage, ADC + microphone ⁽¹⁾		0.9		V
VADC _{OFFSET}	Offset, microphone preamp ⁽¹⁾	Input referenced to MICGAIN = 1111	2.6		mV
VADC _{RMICDIFF}	Differential Input Resistance ⁽¹⁾	TCMICxP to TCMICxN pins	150		kΩ
VADC _{RMICSE}	Single-Ended Input Resistance ⁽¹⁾	TCMICxP/TCMICxN pin to AC ground (TCVBUFx pin)	75		kΩ
VADC _{ROVRP}	VREF Output Resistance ⁽¹⁾		10		Ω
VADC _{PSRRVRP}	VREF PSRR ⁽¹⁾	Per application schematic, V_{RIPPLE} = 200 mV_{P-P} , F_{RIPPLE} = 217 Hz	40		dB
	Cain Control Bongo ⁽¹⁾	Minimum	0		dB
VADC _{GCR}	Gain Control Range ⁽¹⁾	Maximum	30		dB
VADC _{SS}	Gain Control Step Size ⁽¹⁾		2		dB
VADC _{DELAY}	ADC Group Delay ⁽¹⁾	Mean from 300 Hz to 3.3 kHz	0.2		ms
		STEREO DAC			
SDAC _{PB}	Passband Frequency ⁽¹⁾	-3 dB point, FIR optimized ⁽²⁾	22		kHz
SDAC _{RIP}	Ripple ⁽¹⁾	DC to 20 kHz, Fs = 48 kHz, FIR optimized ⁽²⁾	±0.08		dB
SDAC _{SBA}	Stop Band Attenuation ⁽¹⁾	Above Nyquist frequency, FIR optimized ⁽²⁾	70		dB
SDAC _{SNR}	Signal to Noise Ratio ⁽¹⁾	1 kHz, 0 dBFS relative to idle noise, differential, A-weighted, DAC asynchronous to HCLK Clock, clocked from PLL	86		dB
SDAC _{DR}	Dynamic Range ⁽¹⁾	1 kHz, -60 dBFS, AES-17, differential, A-weighted, DAC synchronous to HCLK Clock, clocked from 12 MHz Main Clock	95		dB
SDAC _{THD+N}	Total Harmonic Distortion + noise ⁽¹⁾	-3 dB, 1 kHz input, relative to 0 dBFS, differential	0.01		%
SDACLEVEL	Line Output Level ⁽¹⁾	1 kHz, 20 kΩ load	1		VRMS
SDACLOAD	Minimum Line Output Load ⁽¹⁾	1 kHz, 1V RMS	20		kΩ
SDAC _{DLY}	DAC Group Delay ⁽¹⁾	Fs = 48 kHz	0.8		ms

(1) Specified by design.

(2) DAC frequency response is tested using FIR compensation filter coefficients optimized for the CP3-DB-SP33 development board at a 48 kHz sampling frequency. At a 125x over-sampling rate, these are C0 = 0121h, C1 = FB44h, C2 = 6C79h. At a 128x over-sampling rate, these are C0 = 00E2h, C1 = FA7Dh, C2 = 6999h.

www.ti.com

35.6 ADC Electrical Characteristics

(Temperature: -4	$0^{\circ}C \le TA \le +85^{\circ}C)$
------------------	---------------------------------------

SYMBOL	PARAMETER	Conditions	MIN	TYP	MAX	UNITS
V _{PREF}	ADC Positive Reference Input ⁽¹⁾		1.62		1.98	V
V _{NREF}	ADC Negative Reference Input ⁽¹⁾		0		0.25	V
	ADC Input Range ⁽¹⁾		V _{NREF}		V _{PREF}	V
	Clock Frequency			12		MHz
t _C	Conversion Time (10-bit result) ⁽¹⁾			14		μs
INL	Integral Non-Linearity				±2	LSB
DNL	Differential Non-Linearity				±0.7	LSB
C _{ADCIN}	Total Capacitance of ADC Input ⁽¹⁾		9		20	pF
C _{ADCINS}	Switched Capacitance of ADC Input ⁽¹⁾		8		10	pF
R _{ADCIN}	Resistance of ADC Input Path ⁽¹⁾		0.1		12	kΩ
C _{ADCIN}	Total Capacitance of ADC Reference Input ⁽¹⁾		50		100	pF
C _{ADCINS}	Switched Capacitance of ADC Reference Input ⁽¹⁾		8		10	pF
R _{ADCIN}	Resistance of ADC Reference Input Path ⁽¹⁾		0.2	0.2 0.6		kΩ

(1) Specified by design.

35.7 Output Signal Levels

The following output signals are powered by the digital IO supply (IOVCC) or, in the case of the port pins PF[3:0], RFVCC.

Table 35-1 summarizes the states of the output signals during the reset state (when VCC power exists in the reset state) and during the Power Save mode.

This device has many dedicated input signals which are not internally pulled to a supply; these must be driven or tied off to a voltage lower than 0.5V or higher than IOVCC - 0.5V, to specify that the current in Power Save mode does not exceed 1 mA. An input voltage between 0.5V and (VCC - 0.5V) may result in power consumption exceeding 1 mA.

Table 35-1. Output Pins During Reset and Power-Save Mode

SIGNALS ON A PIN	RESET STATE (WITH Vcc)	POWER SAVE MODE	COMMENTS
PE[15:0]	TRI-STATE	Previous state	I/O ports will maintain their values when entering
PF[13:12,9:8,3:0]	TRI-STATE	Previous state	power-save mode. There is no logic function to support this, so if the CPU and GPIO peripheral have
PG[15:14,3:0]	TRI-STATE	Previous state	a clock, the device is capable of altering the state of
PH[1]	TRI-STATE	Previous state	its port pins.

www.ti.com

35.8 Clock and Reset Timing

SYMBOL	FIGURE	DESCRIPTION	REFERENCE	MIN (ns)	MAX (ns)
		CLOCK	INPUT SIGNALS		
t _{X1p}	Figure 35-1	CLKIN period ⁽¹⁾	Rising Edge (RE) to next RE	83.33	83.33
t _{X1h}	Figure 35-1	CLKIN high time, external clock ⁽¹⁾	At 2V level (both edges)	(0.5 Tclk) - 5	
t _{X1I}	Figure 35-1	CLKIN low time, external clock ⁽¹⁾	At 0.8V level (both edges)	(0.5 Tclk) - 5	
t _{X2p}	Figure 35-1	X2 period ⁽¹⁾⁽²⁾	RE on X2 to next RE on X2	10,000	
t _{X2h}	Figure 35-1	X2 high time, external clock ⁽¹⁾	At 2V level (both edges)	(0.5 Tclk) - 500	
t _{X2I}	Figure 35-1	X2 low time, external clock ⁽¹⁾	At 0.8V level (both edges)	(0.5 Tclk) - 500	
		CLOCK	OUTPUT SIGNALS		
t _{CLKp}	Figure 35-1	HCLK Clock period ⁽¹⁾⁽³⁾	Rising Edge (RE) to next RE	42,667	16.6
t _{CLKh}	Figure 35-1	HCLK Clock high time ⁽¹⁾	At 2V level (both edges)	21,333	20.83
t _{CLKI}	Figure 35-1	HCLK Clock low time ⁽¹⁾	At 0.8V level (both edges)	21,333	20.83
t _{CLKr}	Figure 35-1	HCLK Clock rise time on RE of CLKIN ⁽¹⁾	At 2V level (both edges)		5
t _{CLKf}	Figure 35-1	HCLK Clock fall time on FE of CLKIN ⁽¹⁾	At 0.8V level (both edges)		5
		RESET AND	NMI INPUT SIGNALS	<u>.</u>	
t _{IW}	Figure 35-2	NMI Pulse Width ⁽¹⁾	NMI Falling Edge (FE) to RE	20	
t _{RST}	Figure 35-2	RESET Pulse Width ⁽¹⁾	RESET FE to RE	100	
V _{TRIP}	Figure 35-4	POR Rising Trigger Voltage		1.11V	1.54V
t _{TRIP}	Figure 35-4	Vcc Rise Time to V _{TRIP} ⁽¹⁾			50 ms
t _D	Figure 35-4	Vcc Rise Time from V _{TRIP} to Vcc ⁽¹⁾			800 µs

Table 35-2. Clock and Reset Signals

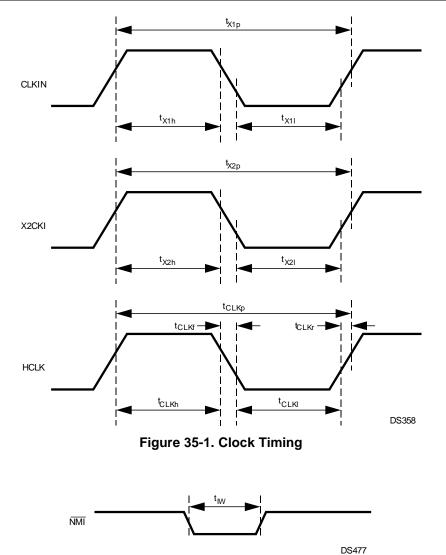
(1) Specified by design.

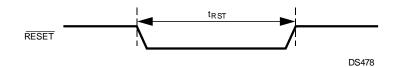
(1) opcomed by design.
 (2) Only when operating with an external square wave on X2CKI; otherwise a 32 kHz crystal network must be used between X2CKI and X2CKO. If Slow Clock is internally generated from Main Clock, it may not exceed this limit.

(3) Tclk is the actual clock period of the CPU clock used in the system. The value of Tclk is system dependent. The maximum cycle time in Power Save mode is 42,667 ns (= 1/12 MHz × 2 × 256). The maximum cycle time in Active mode is 1333 ns (= 1/12 MHz × 16). The minimum cycle time in Active mode is 16.6 ns (= 1/60 MHz).

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com




Figure 35-2. NMI Signal Timing

www.ti.com

XAS

ISTRUMENTS

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

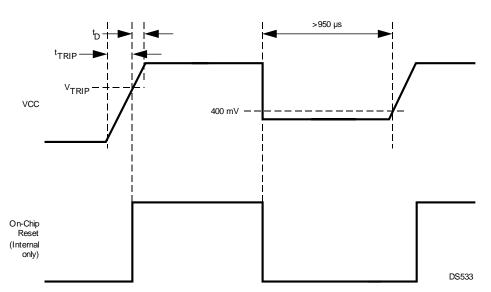


Figure 35-4. Power-On Reset

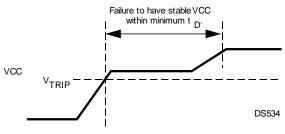


Figure 35-5. Bad Power-On Reset

www.ti.com

35.9 UART Timing

Table 35-3. UART Signals

SYMBOL	FIGURE	DESCRIPTION	REFERENCE	MIN (ns)	MAX (ns)
		UART INPUT SIG	NALS		
t _{ls}	Figure 35-6	Input setup time ⁽¹⁾ RXD (asynchronous mode)	Before Rising Edge (RE) on PCLK Clock		
t _{lh}	Figure 35-6	Input hold time ⁽¹⁾ RXD (asynchronous mode)			
t _{CKX}	Figure 35-6	CKX period (synchronous mode) ⁽¹⁾		250	
t _{RXS}	Figure 35-6	RXD setup time (synchronous mode) ⁽¹⁾	Before Falling Edge (FE) on CKX	40	
t _{RXH}	Figure 35-6	RXD hold time (synchronous mode) ⁽¹⁾	Before Falling Edge (FE) on CKX	40	
		UART OUTPUT SIG	GNALS		
Figure 35-6		TXD output valid (all signals with propagation delay from CLK RE) ⁽¹⁾	After RE on PCLK Clock		35
t _{TXD}	Figure 35-7	TXD output valid ⁽¹⁾	After RE on CKX		40

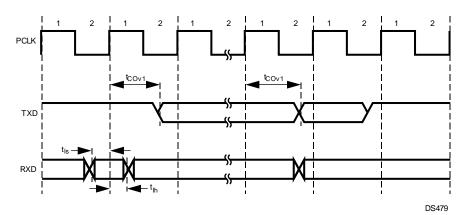
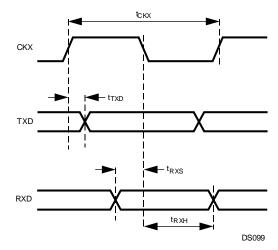
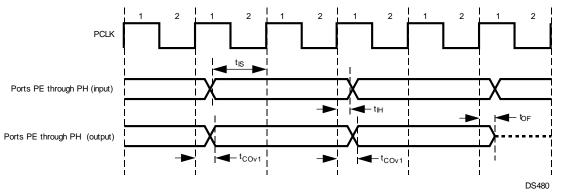



Figure 35-6. UART Asynchronous Mode Timing


www.ti.com

35.10 I/O Port Timing

SYMBOL	FIGURE	DESCRIPTION	REFERENCE	MIN (ns)	MAX (ns)
STWBOL	FIGURE			WIIN (115)	
t _{IS}	Figure 35-8	Input Setup Time ⁽¹⁾	Before Rising Edge (RE) on PCLK Clock		
t _{IH}	Figure 35-8	Input Hold Time ⁽¹⁾	After RE on PCLK Clock		
		I/O PORT	OUTPUT SIGNALS		
t _{COv1}	Figure 35-8	Output Valid Time ⁽¹⁾	After RE on PCLK Clock		15
t _{OF}	Figure 35-8	Output Floating Time ⁽¹⁾	After RE on PCLK Clock		15

Table 35-4. I/O Port Signals

(1) Specified by design.

Figure 35-8. I/O Port Timing

35.11 Advanced Audio Interface (AAI) Timing

Table 35-5. Advanced Audio Interface (AAI) Signals

SYMBOL	FIGURE	DESCRIPTION	REFERENCE	MIN (ns)	MAX (ns)
		AAI INP	UT SIGNALS	•	•
t _{RDS}	Figure 35-9, Figure 35-11		Before Falling Edge (FE) on SRCLK	20	
t _{RDH}	Figure 35-9, Figure 35-11		After FE on SRCLK	20	
t _{FSS}	Figure 35-9	Frame Sync Setup Time	Before Rising Edge (RE) on SRCLK	20	
t _{FSH}	Figure 35-9	Frame Sync Hold Time	After RE on SRCLK	20	
		AAI OUT	PUT SIGNALS	•	
t _{CP}	Figure 35-9	Receive/Transmit Clock Period	RE on SRCLK/SCK to RE on SRCLK/SCK	976.6	
t _{CL}	Figure 35-9	Receive/Transmit Low Time	FE on SRCLK/SCK to RE on SRCLK/SCK	488.3	
t _{CH}	Figure 35-9	Receive/Transmit High Time	RE on SRCLK/SCK to FE on SRCLK/SCK	488.3	
t _{FSVH}	Figure 35-9, Figure 35-11		RE on SRCLK/SCK to RE on SRFS/SFS		20
t _{FSVL}	Figure 35-9, Figure 35-11		RE on SRCLK/SCK to FE on SRFS/SFS		20
t _{TDV}	Figure 35-10, Figure 35-12		RE on SCK to STD Valid		20

Copyright © 2007–2013, Texas Instruments Incorporated

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com

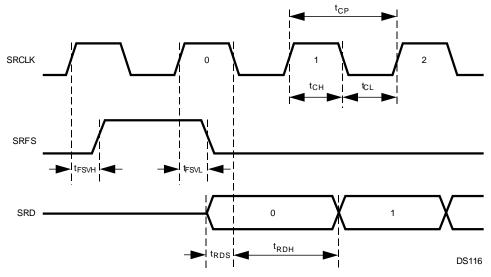


Figure 35-9. Receive Timing, Short Frame Sync

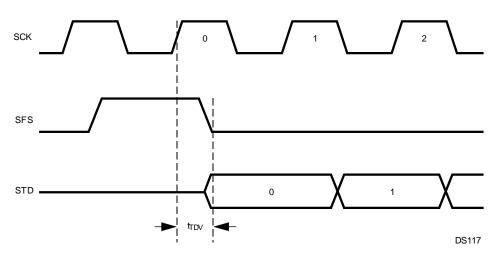
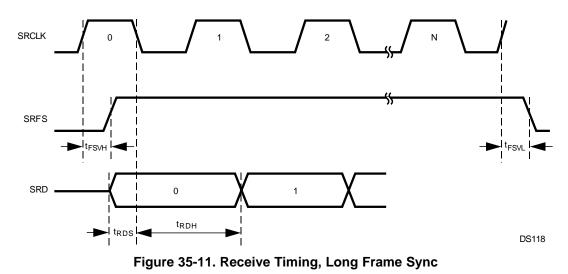



Figure 35-10. Transmit Timing, Short Frame Sync

www.ti.com

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

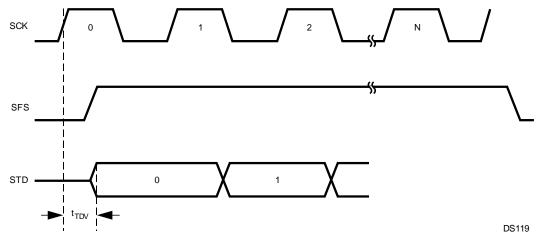


Figure 35-12. Transmit Timing, Long Frame Sync

35.12 Microwire/SPI Timing

SYMBOL	FIGURE	DESCRIPTION	REFERENCE	MIN (ns)	MAX (ns)
I.		MICROWIRE	E/SPI INPUT SIGNALS		
t _{MSKh}	Figure 35-13	Microwire Clock High ⁽¹⁾	At 2.0V (both edges)	80	-
t _{MSKI}	Figure 35-13	Microwire Clock Low ⁽¹⁾	At 0.8V (both edges)	80	-
	Figure 35-13		SCIDL bit = 0; Rising Edge (RE) MSKn to next RE MSKn		-
t _{MSKp}	Figure 35-14	 Microwire Clock Period⁽¹⁾ 	SCIDL bit = 1; Falling Edge (FE) MSKn to next FE MSKn	200	-
t _{MSKh}	Figure 35-13	MSKn Hold (slave only) ⁽¹⁾	After MWCSn goes inactive	40	-
t _{MSKs}	Figure 35-13	MSKn Setup (slave only) ⁽¹⁾	Before MWCSn goes active	80	-
	Figure 35-13		SCIDL bit = 0: After FE MSKn		-
t _{MWCSh}	Figure 35-14	 MWCSn Hold (slave only)⁽¹⁾ 	SCIDL bit = 1: After RE MSKn	40	-
	Figure 35-13		SCIDL bit = 0: Before RE MSKn		-
t _{MWCSs}	Figure 35-14	MWCSn Setup (slave only) ⁽¹⁾	SCIDL bit = 1: Before FE MSKn	80	-
	Figure 35-13	Microwire Data In Hold	Normal Mode: After RE MSKn		-
	Figure 35-15	(master) ⁽¹⁾	Alternate Mode: After FE MSKn	0	-
t _{MDIh}	Figure 35-13	Microwire Data In Hold	Normal Mode: After RE MSKn		-
-	Figure 35-15	(slave) ⁽¹⁾	Alternate Mode: After FE MSKn	40	-
	Figure 35-13		Normal Mode: Before RE MSKn		-
t _{MDIs}	Figure 35-15	Microwire Data In Setup ⁽¹⁾	Alternate Mode: Before FE MSKn	80	-
		MICROWIRE	SPI OUTPUT SIGNALS		
t _{MSKh}	Figure 35-13	Microwire Clock High ⁽¹⁾	At 2.0V (both edges)	40	-
t _{MSKI}	Figure 35-13	Microwire Clock Low ⁽¹⁾	At 0.8V (both edges)	40	-
	Figure 35-13	Missouries Olask Davis (1)	SCIDL bit = 0: Rising Edge (RE) MSKn to next RE MSKn	100	-
t _{MSKp}	Figure 35-14	Microwire Clock Period ⁽¹⁾	SCIDL bit = 1: Falling Edge (FE) MSKn to next FE MSKn	100	-
t _{MSKd}	Figure 35-13	MSKn Leading Edge Delayed (master only) ⁽¹⁾	Data Out Bit 7 Valid	0.5 t _{MSK}	1.5 t _{MSK}
t _{MDOf}	Figure 35-13	Microwire Data Float (slave only) ⁽¹⁾	After RE on MWCSn	-	25
	Figure 35-13		Normal Mode: After FE MSKn		
t _{MDOh}	Figure 35-14	Microwire Data Out Hold ⁽¹⁾	Alternate Mode: After RE MSKn	0	-
t _{MDOnf}	Figure 35-17	Microwire Data No Float (slave only) ⁽¹⁾	After FE on MWCSn	0	25
	Einung 05 40	Microwine Date Out Mali (1)	Normal Mode: After FE on MSKn		
t _{MDOv}	Figure 35-13	Microwire Data Out Valid ⁽¹⁾	Alternate Mode: After RE on MSKn		25
t _{MITOp}	Figure 35-17	MDODIn to MDIDOn (slave only) ⁽¹⁾	Propagation Time Value is the same in all clocking modes of the Microwire		25

Table 35-6. Microwire/SPI Signals

(1) Specified by design.

www.ti.com

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

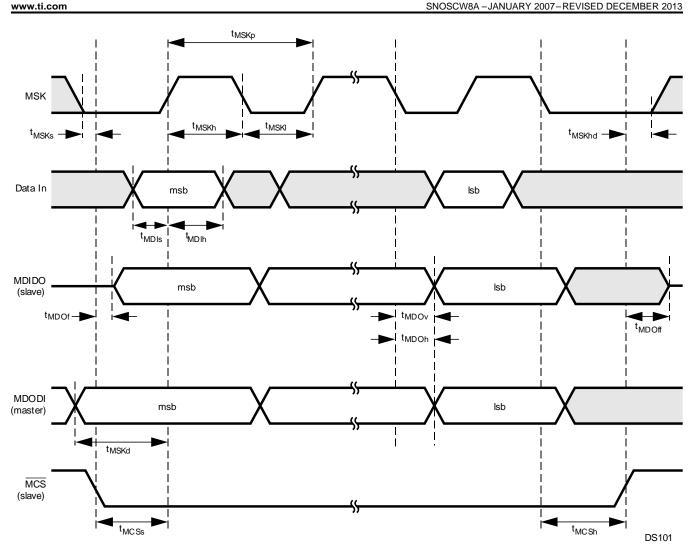


Figure 35-13. Microwire Transaction Timing, Normal Mode, SCIDL = 0

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

www.ti.com

Texas Instruments

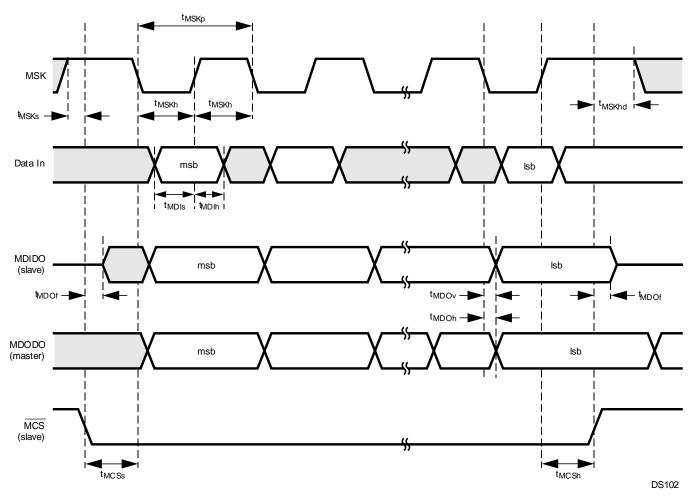


Figure 35-14. Microwire Transaction Timing, Normal Mode, SCIDL = 1

www.ti.com

SNOSCW8A – JANUARY 2007 – REVISED DECEMBER 2013

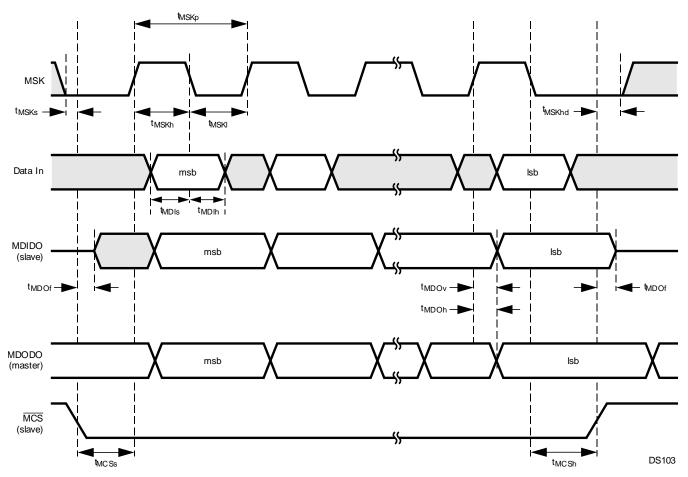
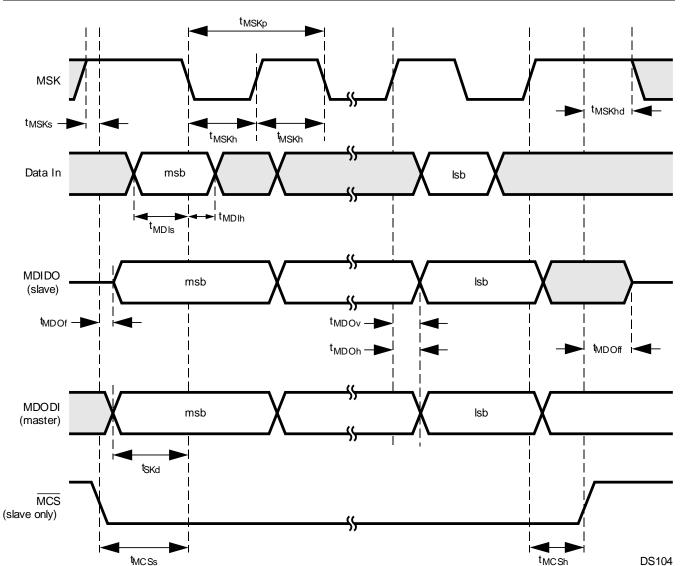
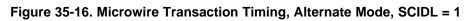




Figure 35-15. Microwire Transaction Timing, Alternate Mode, SCIDL = 0

SNOSCW8A-JANUARY 2007-REVISED DECEMBER 2013

TEXAS INSTRUMENTS

www.ti.com

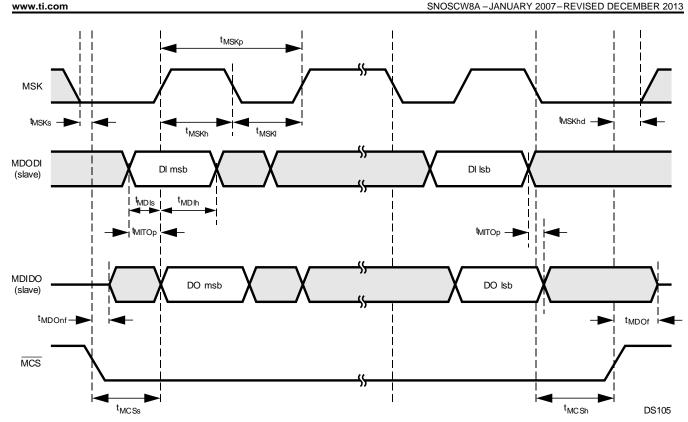
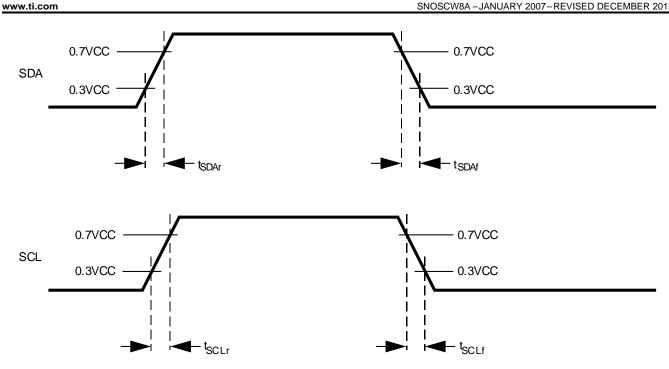


Figure 35-17. Microwire Transaction Timing, Data Echoed to Output, Normal Mode, SCIDL = 0, ECHO = 1, Slave Mode

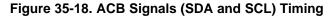
EXAS **ISTRUMENTS**

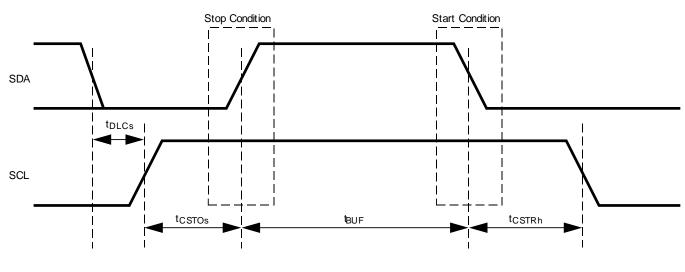
www.ti.com


35.13 ACCESS.bus timing

SYMBOL	FIGURE	DESCRIPTION	REFERENCE	MIN (ns)	MAX (ns)
		ACCESS.BUS	INPUT SIGNALS		
t _{BUFi}	Figure 35-19	Bus free time between Stop and Start Condition ⁽¹⁾		t _{SCLhigho}	
t _{CSTOsi}	Figure 35-19	SCLn setup time ⁽¹⁾	Before Stop Condition	(8 × t _{CLK}) - t _{SCLri}	
t _{CSTRhi}	Figure 35-19	SCLn hold time ⁽¹⁾	After Start Condition	(8 × t _{CLK}) - t _{SCLri}	
t _{CSTRsi}	Figure 35-19	SCLn setup time ⁽¹⁾	Before Start Condition	(8 × t _{CLK}) - t _{SCLri}	
t _{DHCsi}	Figure 35-19	Data High setup time ⁽¹⁾	Before SCLn Rising Edge (RE)	2 × t _{CLKp}	
t _{DLCsi}	Figure 35-19	Data Low setup time ⁽¹⁾	Before SCLn RE	2 × t _{CLKp}	
t _{SCLri}	Figure 35-18	SCLn signal rise time ⁽¹⁾			1000
t _{SCLfi}	Figure 35-18	SCLn signal fall time ⁽¹⁾			300
t _{SCLlowi}	Figure 35-21	SCLn low time ⁽¹⁾	After SCLn Falling Edge (FE)	16 × t _{CLKp}	
t _{SCLhighi}	Figure 35-21	SCLn high time ⁽¹⁾	After SCLn RE	16 × t _{CLKp}	
t _{SDAri}	Figure 35-18	SDAn signal rise time ⁽¹⁾			1000
t _{SDAfi}	Figure 35-18	SDAn signal fall time ⁽¹⁾			300
t _{SDAhi}	Figure 35-21	SDAn hold time ⁽¹⁾	After SCLn FE	0	
t _{SDAsi}	Figure 35-21	SDAn setup time ⁽¹⁾	Before SCLn RE	2 × t _{CLKp}	
		ACCESS.BUS	OUTPUT SIGNALS		
t _{BUFo}	Figure 35-19	Bus free time between Stop and Start Condition ⁽¹⁾		t _{SCLhigho}	
t _{CSTOso}	Figure 35-19	SCLn setup time ⁽¹⁾	Before Stop Condition	t _{SCLhigho}	
t _{CSTRho}	Figure 35-19	SCLn hold time ⁽¹⁾	After Start Condition	t _{SCLhigho}	
t _{CSTRso}	Figure 35-20	SCLn setup time ⁽¹⁾	Before Start Condition	t _{SCLhigho}	
t _{DHCso}	Figure 35-20	Data High setup time ⁽¹⁾	Before SCLn RE	t _{SCLhigho} -t _{SDAro}	
t _{DLCso}	Figure 35-19	Data Low setup time ⁽¹⁾	Before SCLn RE	t _{SCLhigho} -t _{SDAfo}	
t _{SCLfo}	Figure 35-18	SCLn signal Fall time ⁽¹⁾			300 ⁽²⁾
t _{SCLro}	Figure 35-18	SCLn signal Rise time ⁽¹⁾			_(3)
t _{SCLlowo}	Figure 35-21	SCLn low time ⁽¹⁾	After SCLn FE	$(K \times t_{CLK}) - 1^{(4)}$	
t _{SCLhigho}	Figure 35-21	SCLn high time ⁽¹⁾	After SCLn RE	(K × t _{CLK}) -1	
t _{SDAfo}	Figure 35-18	SDAn signal Fall time ⁽¹⁾			300
t _{SDAro}	Figure 35-18	SDAn signal Rise time ⁽¹⁾			
t _{SDAho}	Figure 35-21	SDAn hold time ⁽¹⁾	After SCLn FE	$(7 \times t_{CLK}) - t_{SCLfo}$	
t _{SDAvo}	Figure 35-21	SDAn valid time ⁽¹⁾	After SCLn FE		$(7 \times t_{CLK}) + t_{RD}$

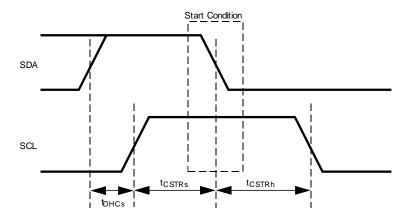
Table 35-7. ACCESS.bus Signals


Specified by design.
 Assuming the signal's capacitance is up to 400 pF.
 Depends on the signal's capacitance and the pullup value. Must be less than 1 ms.
 K is as specified in ACBnCTL2.SCLFRQ*2. K > 15.



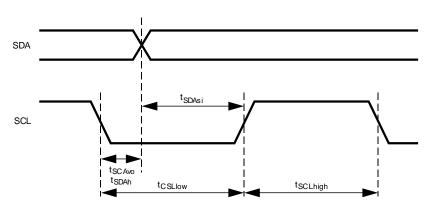
Note: In the timing tables the parameter name is added with an "o" for output signal timing and "i" for input signal timing.

DS106



Note: In the timing tables the parameter name is added with an "o" for output signal timing and "i" for input signal timing. DS107

Figure 35-19. ACB Start and Stop Condition Timing


www.ti.com

Note: In the timing tables the parameter name is added with an "o" for output signal timing and "i" for input signal timing.

DS108

Note: In the timing tables the parameter name is added with an "o" for output signal timing and "i" for input signal timing. unless the parameter already includes the suffix.

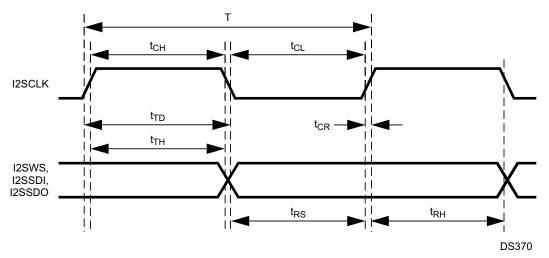
DS109

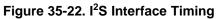
Figure 35-21. ACB Data Timing

35.14 USB Port AC Characteristicsy

SYMBOL	DESCRIPTION	CONDITIONS ⁽¹⁾	MIN	ТҮР	MAX	UNITS
T _R	Rise Time ⁽²⁾	C _L = 50 pF	4		20	ns
T _F	Fall Time ⁽²⁾	C _L = 50 pF	4		20	ns
T _{RFM}	Fall/Rise Time Matching $(T_R/T_F)^{(2)}$	C _L = 50 pF	90		110	%
Z _{DRV}	Driver Output Impedance ⁽²⁾	C _L = 50 pF	28		43	Ω

(1) Waveforms measured at 10% to 90%.




www.ti.com

35.15 I²S Interface Timing

SYMBOL	FIGURE	DESCRIPTION	REFERENCE	LOWER	R LIMIT	UPPEI	R LIMIT
				MIN (ns)	MAX (ns)	MIN (ns)	MAX (ns)
		I ² S INTER	RFACE TRANSMITTER	SIGNALS			1
Т	Figure 35-22	I ² S clock period ⁽¹⁾		Tt			
T _t	Figure 35-22	Minimum transmitter clock period ⁽¹⁾	$T > T_t$	0.35 T _t	0.35 T _t		
t _{CH}	Figure 35-22	I ² S clock high ⁽¹⁾	V _{ih}	(master)	(slave)		
t _{CL}	Figure 35-22	l ² S clock ⁽¹⁾	V _{il}	0.35 T (master)	0.35 T (slave)		
t _{CR}	Figure 35-22	I ² S clock rise time (slave mode) ⁽¹⁾				0.15 T _t	
t _{TD}	Figure 35-22	Delay ⁽¹⁾	Rising Edge (RE) on I ² S Clock				0.8 T _t
t _{TH}	Figure 35-22	Hold time ⁽¹⁾	RE on I ² S Clock	0			
		I ² S INT	ERFACE RECEIVER SIG	GNALS			
Т	Figure 35-22	I ² S clock period ⁽¹⁾		Tt			
T _r	Figure 35-22	Minimum receiver clock period ⁽¹⁾	T > Tr				
t _{CH}	Figure 35-22	I ² S clock high ⁽¹⁾	V _{ih}	0.35 T (master)	0.35 T (slave)		
t _{CL}	Figure 35-22	I ² S clock low ⁽¹⁾	V _{il}	0.35 T _r (master)	0.35 T _r (slave)		
t _{RS}	Figure 35-22	Setup time ⁽¹⁾	RE on I ² S Clock		0.2 T _r		
t _{RH}	Figure 35-22	Hold time ⁽¹⁾	RE on I ² S Clock		0		

Table 35-9. I²S Interface Signals

www.ti.com

STRUMENTS

XAS

35.16 MULTI-FUNCTION TIMER (MFT) TIMING

Table 35-10. Multi-Function Timer Input Signals

Symbol	Figure	Description	Reference	Min (ns)	Max (ns)
t _{TAH}	Figure 35-23	TAn High Time ⁽¹⁾			
t _{TAL}	Figure 35-23	TAn Low Time ⁽¹⁾			
t _{TBH}	Figure 35-23	TBn High Time ⁽¹⁾			
t _{TBL}	Figure 35-23	TBn Low Time ⁽¹⁾			

(1) Specified by design.

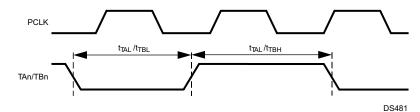


Figure 35-23. Multi-Function Timer Input Timing

35.17 Versatile Timing Unit (VTU) Timing

Table 35-11. Versatile Timing Unit Input Signals

Symbol	Figure	Description	Reference	Min (ns)	Max (ns)
tTIOH	Figure 35-24	TIOn_y Input High Time ⁽¹⁾	Rising Edge (RE) on PCLK Clock	1.5 × TCLK + 5 ns	
tTIOL	Figure 35-24	TIOn_y Input Low Time ⁽¹⁾	RE on PCLK Clock	1.5 × TCLK + 5 ns	

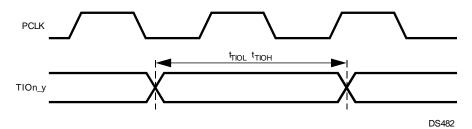
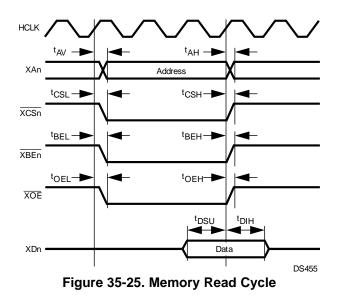
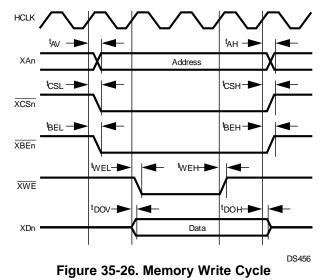


Figure 35-24. Versatile Timing Unit Input Timing




www.ti.com

35.18 External Memory Interface

SYMBOL	FIGURE	DESCRIPTION	REFERENCE	MIN (ns)	MAX (ns)
		EXTERNAL MEMO	ORY INPUT SIGNALS		
t _{DSU}	Figure 35-25	Data Bus Input Setup ⁽¹⁾	Before Rising Edge (RE) on HCLK Clock	5	
t _{DIH}	Figure 35-25	Data Bus Input Hold ⁽¹⁾	After RE on HCLK Clock	0	
EXTERNAL MEMO	DRY OUTPUT SIGN	ALS			
t _{AV}	Figure 35-25, Figure 35-26	Address Bus Valid ⁽¹⁾	After RE on HCLK Clock		9
t _{AH}	Figure 35-25, Figure 35-26	Address Bus Hold ⁽¹⁾	After RE on HCLK Clock	0	
t _{CSL}	Figure 35-25, Figure 35-26	Chip Select Low ⁽¹⁾	After RE on HCLK Clock		9
t _{CSH}	Figure 35-25, Figure 35-26	Chip Select Hold ⁽¹⁾	After RE on HCLK Clock	0	
t _{BEL}	Figure 35-25, Figure 35-26	Byte Enable Low ⁽¹⁾	After RE on HCLK Clock		9
t _{BEH}	Figure 35-25, Figure 35-26	Byte Enable Hold ⁽¹⁾	After RE on HCLK Clock	0	
t _{OEL}	Figure 35-25	Output Enable Low ⁽¹⁾	After RE on HCLK Clock		9
t _{OEH}	Figure 35-25	Output Enable Hold ⁽¹⁾	After RE on HCLK Clock	0	
t _{WEL}	Figure 35-25	Write Enable Low ⁽¹⁾	After RE on HCLK Clock		9
t _{WEH}	Figure 35-25	Write Enable Hold ⁽¹⁾	After RE on HCLK Clock	0	
t _{DOV}	Figure 35-25	Data Bus Output Valid ⁽¹⁾	After RE on HCLK Clock		9
t _{DOH}	Figure 35-25	Data Bus Output Hold ⁽¹⁾	After RE on HCLK Clock	0	

Table 35-12. External Memory Signals

www.ti.com

36 PIN ASSIGNMENTS

36.1 CP3CN37 in the 144-pin LQFP Package

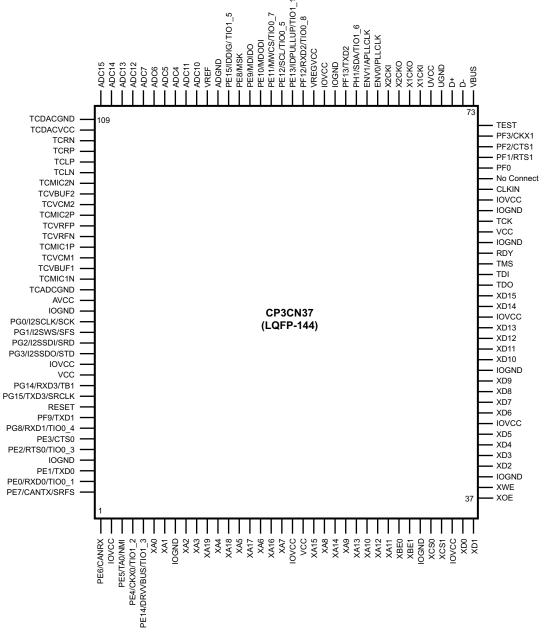


Figure 36-1. CP3CN37 in the 144-pin LQFP Package (Top View)

DS522

www.ti.com

Table 36-1. Pin Assignments	s for 144-Pin Package	÷
-----------------------------	-----------------------	---

PE6/CANRX IOVCC PE5/TA0/NMI PE4/CKX0/TIO1_2 PE14/DRVVBUS/TIO1_3 XA0 XA1 IOGND XA2 XA3 XA19 XA4 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC
PE5/TA0/NMI PE4/CKX0/TI01_2 PE14/DRVVBUS/TI01_3 XA0 XA1 IOGND XA2 XA3 XA19 XA4 XA18 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC
PE4/CKX0/TIO1_2 PE14/DRVVBUS/TIO1_3 XA0 XA1 IOGND XA2 XA3 XA19 XA4 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC
PE14/DRVVBUS/TIO1_3 XA0 XA1 IOGND XA2 XA3 XA3 XA19 XA4 XA4 XA18 XA5 XA5 XA17 XA6 XA16 XA16 XA16 XA7 IOVCC VCC	IOVCC
XA0 XA1 IOGND XA2 XA3 XA19 XA4 XA18 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC
XA1 IOGND XA2 XA3 XA19 XA4 XA18 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC
IOGND XA2 XA3 XA19 XA4 XA18 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC
XA2 XA3 XA19 XA4 XA18 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC
XA3 XA19 XA4 XA18 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC
XA19 XA4 XA18 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC
XA4 XA18 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC
XA4 XA18 XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC IOVCC
XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC IOVCC IOVCC
XA5 XA17 XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC IOVCC IOVCC
XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC
XA6 XA16 XA7 IOVCC VCC	IOVCC IOVCC IOVCC
XA16 XA7 IOVCC VCC	IOVCC IOVCC
XA7 IOVCC VCC	IOVCC
IOVCC VCC	
VCC	
	On-Chip Digital VCC
XA15	IOVCC
XA8	IOVCC
XA14	IOVCC
	XA14 XA9 XA13 XA10 XA12 XA11 XBE0 XBE1 IOGND XCS0 XCS1 IOVCC XD0 XD1 XOE XWE IOGND XD1 XOE XWE IOGND XD2 XD3 XD4 XD5 IOVCC XD6 XD7 XD8

Copyright © 2007–2013, Texas Instruments Incorporated

www.ti.com

Pin Number	Signal Name	Power Supply Domain
48	XD9	IOVCC
49	IOGND	IOVCC
50	XD10	IOVCC
51	XD11	IOVCC
52	XD12	IOVCC
53	XD13	IOVCC
54	IOVCC	IOVCC
55	XD14	IOVCC
56	XD15	IOVCC
57	TDO	IOVCC
58	TDI	IOVCC
59	TMS	IOVCC
60	RDY	IOVCC
61	IOGND	IOVCC
62	VCC	On-Chip Digital VCC
63	ТСК	IOVCC
64	RFGND	RFVCC
65	RFVCC	RFVCC
66	CLKIN	RFVCC
67	No connect	
68	PF0	RFVCC
69	PF1	RFVCC
70	PF2	RFVCC
70	PF3	RFVCC
72	No connect	RFVCC
73	VBUS	UVCC
73	VB03	UVCC
	D-	UVCC
75 76		UVCC
	UGND	UVCC
77		
78	X1CKI	On-Chip Digital VCC
79	X1CKO	On-Chip Digital VCC
80	X2CKO	On-Chip Digital VCC
81	X2CKI	On-Chip Digital VCC
82		IOVCC
83	ENV1/APPLCLK	IOVCC
84	PH1/SDA/TIO1_6	IOVCC
85	PF13/TXD2	IOVCC
86	IOGND	IOVCC
87	IOVCC	IOVCC
88	VREGVCC	On-Chip Regulator Input
89	PF12/RXD2/TIO0_8	IOVCC
90	PE13/IDPULLUP/TIO1_1	IOVCC
91	PE12/SCL/TIO0_5	IOVCC
92	PE11/MWCS/TIO0_7	IOVCC
93	PE10/MDODI	IOVCC
94	PE9/MDIDO	IOVCC

Table 36-1. Pin Assignments for 144-Pin Package (continued)

www.ti.com

Pin Number	Signal Name	Power Supply Domain				
95	PE8/MSK	IOVCC				
96	PE15/IDDIG/TIO1_5	IOVCC				
97	ADGND	On-Chip Analog VCC				
98	VREF	On-Chip Analog VCC				
99	ADC10	On-Chip Analog VCC				
100	ADC11	On-Chip Analog VCC				
101	ADC4	On-Chip Analog VCC				
102	ADC5	On-Chip Analog VCC				
103	ADC6	On-Chip Analog VCC				
104	ADC7	On-Chip Analog VCC				
105	ADC12	On-Chip Analog VCC				
106	ADC13	On-Chip Analog VCC				
107	ADC14	On-Chip Analog VCC				
108	ADC15	On-Chip Analog VCC				
109	TCDACGND	TCDACVCC				
110	TCDACVCC	TCDACVCC				
111	TCRN	TCDACVCC				
112	TCRP	TCDACVCC				
113	TCLP	TCDACVCC				
114	TCLN	TCDACVCC				
115	TCMIC2N	On-Chip Analog VCC				
116	TCVBUF2	On-Chip Analog VCC				
117	TCVCM2	On-Chip Analog VCC				
118	TCMIC2P	On-Chip Analog VCC				
119	TCVRFP	On-Chip Analog VCC				
120	TCVRFN	On-Chip Analog VCC				
121	TCMIC1P	On-Chip Analog VCC				
122	TCVCM1	On-Chip Analog VCC				
123	TCVBUF1	On-Chip Analog VCC				
124	TCMIC1N	On-Chip Analog VCC				
125	TCADCGND	On-Chip Analog VCC				
126	AVCC (TCADCVCC)	On-Chip Analog VCC				
127	IOGND	IOVCC				
128	PG0/I2SCLK/SCK	IOVCC				
129	PG1/I2SWS/SFS	IOVCC				
130	PG2/I2SSDI/SRD	IOVCC				
131	PG3/I2SSDO/STD	IOVCC				
132	IOVCC	IOVCC				
133	VCC	On-Chip Digital VCC				
134	PG14/RXD3/TB1	IOVCC				
135	PG15/TXD3/SRCLK	IOVCC				
136	RESET	IOVCC				
137	PF9/TXD1	IOVCC				
138	PF8/RXD1/TIO0_4	IOVCC				
139	PE3/CTS0	IOVCC				
140	PE2/RTS0/TIO0_3	IOVCC				
141	IOGND	IOVCC				

Table 36-1. Pin Assignments for 144-Pin Package (continued)

Copyright © 2007–2013, Texas Instruments Incorporated

www.ti.com

Table 36-1. Pin Assignments for 144-Pin Package (continued)

Pin Number	Signal Name	Power Supply Domain
142	PE1/TXD0	IOVCC
143	PE0/RXD0/TIO0_1	IOVCC
144	PE7/CANTX/SRFS	IOVCC

SNOSCW8A - JANUARY 2007 - REVISED DECEMBER 2013

www.ti.com

37 Revision History

Date	Major Changes from Previous Version								
6/19/05	Initial Release.								
6/29/05	Changed external memory interface data input hold time to 0 ns (min.). Changed IOVCC (min.) to 2.97.								
7/20/05	Removed specification for ADC[9:0] from Absolute Maximum Ratings. In DC Electrical Characteristics, changed $I_{OH/IOL}$ from ±24 mA to ±10 mA. Changed test condition for IOLACB from 2.25 V to 3 V. In USB Electrical Characteristics, changed V _{OL} test condition to RL = 1.5 k Ω to 3.6V. Changed V _{OH} test condition to R _L = 1.5 k Ω to GND.								
7/29/05	In USB Electrical Characteristics, changed V_{OH} test condition to $R_L = 15 k\Omega$ to 0V. Added ADC Electrical Characteristics section. Added "Guaranteed by design." footnote to most DC and AC specifications.								
8/31/05	Removed ACCESS.bus note from Absolute Maximum Ratings. Replaced POR reset specifications in the Clock and Reset AC specifications. Replaced the Clock Configuration section for the Advanced Audio Interface.								
9/2/05	In DC Electrical Characteristics, changed test condition for IOLACB from 3 V to 2.25 V. Changed test condition for IO(Off) to 0V ≤ Vout ≤ IOVcc. In Telematics Codec Electrical Characteristics, added footnote.								
9/2/05	Corrections and clarifications in description of Power-On Reset (Section 15.1).								
10/26/05	Changed bit 11 in the TCDCBASIC register to reserved. Changed bit 12 to FLSADC. Revised legal notices on back page.								
12/21/05	Removed references to the USB DMA controller. Changed IRQ62 to reserved. Stated the maximum PCLK frequency is 48 MHz. Added a warning not to disable a codec DMA request while it is asserted, because that prevents the request from being cleared. Corrected explanation to say that the DAC FIFOs are flushed when the DC protection is triggered, and the stereo DAC may be shut down when a programmable number of DC protection events occurs. Mentioned the DAC oversampling rate must be set to 125 and warning flags become set if the sidetone causes the corresponding channel to clip. Added DCLIMIT default value of 1023 for programmed values less than 16. Removed sentence about SDLIMIT field being interpreted as one greater than the programmed value. Added note about disabling I2SCLK and I2SSWS to avoid draining the right transmit FIFO after preloading it with data. Corrected description of the WSSTATUS field to indicate it describes the length of one phase, not one cycle. Added a few sentences about incorrect values being returned if RTPRD or RTCRD are read within one second of wake-up from Idle mode. Changed maximum weak pullup current to -200 uA. Replaced most of the information in the codec electrical specifications. Added section describing ROM bootloader interface.								
1/19/06	Changed minimum voltage regulator input to 2.7 V.								
1/20/06	Removed references to Bluetooth.								
2/21/06	Added more information to selection guide. In PLL section, added description of FREF and FVCO. In GPIO section, removed description of PxHDRV registers. In USB section, removed mention of the USB DMA controller and added restriction that Host mode supports only one downstream device.								
2/27/06	Updated both tables of recommended PLL divisors.								
3/1/06	Corrected SDACTHD+N specification.								
3/6/06	Added package suffix to the NSID in the device selection guide.								
5/23/06	Changed pin 72 from NC to TEST. Removed ILD and ILA from on-chip voltage regulator DC specifications.								
8/11/06	Changed ADC specification for VPREF Expanded UART baud rate programming tables. Changed maximum baud rate for UARTs. Changed maximum bus clock frequencies for Microwire/SPI and ACCESS.bus interfaces.								
8/15/06	Inverted sense of SENDSTALL bit in RXCSR register. Added conditions which cause USB peripheral to send NAK packet. Added flow control and external clock alternate pin functions for UART1.								
9/28/06	Updated NSID ordering code. Added MWCTL2 to the register map.								
1/10/07	Corrected USB connector diagram.								
12/20/13	Changed to TI format.								

Table 37-1. CP3CN37 Revision History

15-May-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CP3CN37VVAWQX/NOPB	ACTIVE	LQFP	PGE	144	500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR		CP3CN37VVAWQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

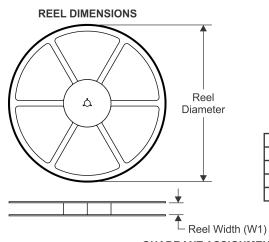
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

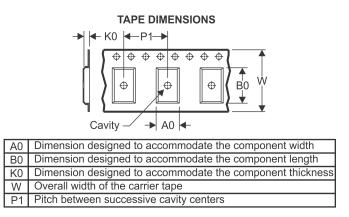
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

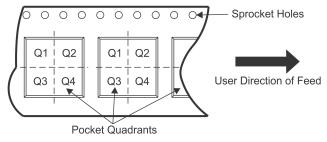
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

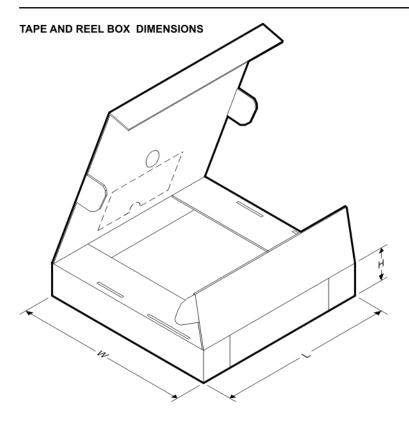
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CP3CN37VVAWQX/NOP B	LQFP	PGE	144	500	330.0	44.4	23.0	23.0	2.0	32.0	44.0	Q1

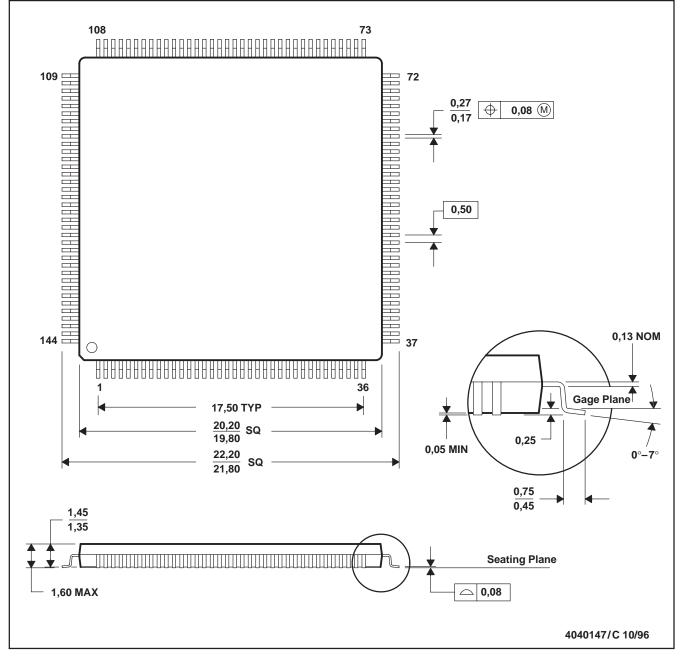
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

16-May-2018

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CP3CN37VVAWQX/NOPB	LQFP	PGE	144	500	367.0	367.0	67.0

MECHANICAL DATA

MTQF017A - OCTOBER 1994 - REVISED DECEMBER 1996

PGE (S-PQFP-G144)

PLASTIC QUAD FLATPACK

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated